MANUALE UTENTE

MULTIPROTOCOL "KEY-C" GATEWAYS SERIES

MODBUS TO CLOUD (MQTT/HTTP) GATEWAYS

SENECA S.r.I. Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287 www.seneca.it

ORIGINAL INSTRUCTIONS

ATTENZIONE

SENECA non garantisce che tutte le specifiche e/o gli aspetti del prodotto e del firmware, ivi incluso, risponderanno alle esigenze dell'effettiva applicazione finale pur essendo, il prodotto di cui alla presente documentazione, rispondente a criteri costruttivi secondo le tecniche dello stato dell'arte.

L'utilizzatore si assume ogni responsabilità e/o rischio segnatamente alla configurazione del prodotto per il raggiungimento dei risultati previsti in relazione all'installazione e/o applicazione finale specifica.

SENECA, previ accordi al caso di specie, può fornire attività di consulenza per la buona riuscita dell'applicazione finale, ma in nessun caso può essere ritenuta responsabile per il buon funzionamento della stessa.

Il prodotto SENECA è un prodotto avanzato, il cui funzionamento è specificato nella documentazione tecnica fornita con il prodotto stesso e/o scaricabile, anche in un momento antecedente all'acquisto, dal sito internet <u>www.seneca.it</u>.

SENECA adotta una politica di continuo sviluppo riservandosi, pertanto, il diritto di effettuare e/o introdurre - senza necessità di preavviso alcuno – modifiche e/o miglioramenti su qualsiasi prodotto descritto nella presente documentazione.

Il prodotto quivi descritto può essere utilizzato solo ed esclusivamente da personale qualificato per la specifica attività ed in conformità con la relativa documentazione tecnica avendo riguardo, in particolare modo, alle avvertenze di sicurezza.

Il personale qualificato è colui che, sulla base della propria formazione, competenza ed esperienza, è in grado di identificare i rischi ed evitare potenziali pericoli che potrebbero verificarsi nell'utilizzo di questo prodotto.

I prodotti SENECA possono essere utilizzati esclusivamente per le applicazioni e nelle modalità descritte nella documentazione tecnica relativa ai prodotti stessi.

Al fine di garantire il buon funzionamento e prevenire l'insorgere di malfunzionamenti, il trasporto, lo stoccaggio, l'installazione, l'assemblaggio, la manutenzione dei prodotti SENECA devono essere eseguiti nel rispetto delle avvertenze di sicurezza e delle condizioni ambientali specificate nella presente documentazione.

La responsabilità di SENECA in relazione ai propri prodotti è regolata dalle condizioni generali di vendita scaricabili dal sito <u>www.seneca.it</u>.

SENECA e/o i suoi dipendenti, nei limiti della normativa applicabile, non saranno in ogni caso ritenuti responsabili di eventuali mancati guadagni e/o vendite, perdite di dati e/o informazioni, maggiori costi sostenuti per merci e/o servizi sostitutivi, danni a cose e/o persone, interruzioni di attività e/o erogazione di servizi, di eventuali danni diretti, indiretti, incidentali, patrimoniali e non patrimoniali, consequenziali in qualsiasi modalità causati e/o cagionati, dovuti a negligenza, imprudenza, imperizia e/o altre responsabilità derivanti dall'installazione, utilizzo e/o impossibilità di utilizzo del prodotto.

CONTACT US	
Technical support	supporto@seneca.it
Product information	commerciale@seneca.it

Document revisions

DATE	REVISION	NOTES	AUTHOR
14/02/2025	0	Prima revisione	MM
24/02/2025	1	Aggiunto capitolo sul significato dei led	MM

Questo documento è di proprietà di SENECA srl. La duplicazione e la riproduzione sono vietate, se non autorizzate.

INDICE

1.	DESCRIZIONE	6
1.1.	Protocolli MODBUS, MQTT, HTTP	6
1.2.	CARATTERISTICHE DELLE PORTE DI COMUNICAZIONE DELLA SERIE "KEY"	6
2.	REVISIONE HARDWARE DEL DISPOSITIVO	7
3.		8
3.1.	CAMBIO DEI PROTOCOLLI CON IL SOFTWARE SENECA DISCOVERY DEVICE	9
4.	SIGNIFICATO DEI LED	10
4.1.	LED MODELLO Z-KEY-C (CLOUD)	10
5.	PORTA ETHERNET	13
6.	AGGIORNAMENTO FIRMWARE	13
7.	MODALITA' DI FUNZIONAMENTO	14
7.1.	MODBUS MASTER / CLIENT TO CLOUD	14
7.2.	DIAGNOSTICA SEMPLIFICATA DEI TAG	16
7.3.	DIAGNOSTICA ESTESA DEI TAG	16
8.	WEBSERVER DEI GATEWAY "-C"	18
8.1.	GUIDA PASSO PASSO PER IL PRIMO ACCESSO AL WEBSERVER	18
9.	CONFIGURAZIONE DEL DISPOSITIVO DA WEBSERVER	19
9.1.	PAGINA DI SETUP	19
9.1.1	. PARAMETRI DI CONFIGURAZIONE GENERALI	20
9.2.	PAGINA SETUP TAG	24
9.2.1		20 27
9.3.	DIRFLADMA 0	
9.3.2	ONBOARD	30
9.4.	PAGINA CERTIFICATE/DATABASE UPDATE	30
10.	RIPRISTINO DEL DISPOSITIVO ALLA CONFIGURAZIONE DI FABBRICA	31
11.	TEMPLATE EXCEL	32
12.	SERIAL TRAFFIC MONITOR	33

13. FAIL	INSTALLAZIONE DI PIÙ DISPOSITIVI IN UNA RETE UTILIZZANDO IL "DHCP ADDRESS"
14.	IL CAVO RS232 DB9
15.	PROTOCOLLI MODBUS DI COMUNICAZIONE SUPPORTATI
15.1.	Codici funzione Modbus supportati
16.	INFORMAZIONI SUI REGISTRI MODBUS
16.1.	NUMERAZIONE DEGLI INDIRIZZI MODBUS "0 BASED" O "1 BASED"
16.2.	NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "0 BASED"
16.3.	NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "1 BASED" (STANDARD)
16.4.	CONVENZIONE DEI BIT ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER
16.5.	CONVENZIONE DEI BYTE MSB e LSB ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER
16.6.	RAPPRESENTAZIONE DI UN VALORE A 32 BIT IN DUE REGISTRI MODBUS HOLDING REGISTER CONSECUTIVI.40
16.7.	TIPI DI DATO FLOATING POINT A 32 BIT (IEEE 754)41

1. DESCRIZIONE

I prodotti Z-KEY-C, R-KEY-LT-C, Z-KEY-2ETH-C permettono di acquisire i dati da bus seriali o ethernet basati su protocolli Modbus e di inviarli ai cloud con il protocollo MQTT(s) o http(s). È anche supportata la scrittura da cloud verso Modus.

1.1. PROTOCOLLI MODBUS, MQTT, HTTP

I protocolli Modbus supportati sono: Modbus RTU Master Modbus RTU Slave Modbus ASCII Master Modbus ASCII Slave Modbus TCP-IP Server Modbus TCP-IP Client Per ulteriori informazioni su questi protocolli, consultare il sito web delle specifiche Modbus: http://www.modbus.org/specs.php

MQTT

Il protocollo MQTT supportato è la versione 3.1.1

Il protocollo HTTP per la pubblicazione dei tag su cloud si basa su API Rest

Il protocollo TLS supportato è la versione 1.2

Certificati delle chiavi secondo standard X.509

1.2. CARATTERISTICHE DELLE PORTE DI COMUNICAZIONE DELLA SERIE "KEY"

PRODOTTO	NR PORTE ETHERNET	NR PORTE SERIALI	PORTE SERIALI ISOLATE
Z-KEY-C	1	2	Sì, entrambe le porte
R-KEY-LT-C	1	1	NO
Z-KEY-2ETH-C	2	2	Sì, entrambe le porte

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

2. REVISIONE HARDWARE DEL DISPOSITIVO

In un'ottica di miglioramento continuo Seneca aggiorna e rende sempre più sofisticato l'hardware dei suoi dispositivi. È possibile conoscere la revisione hardware di un prodotto tramite l'etichetta posta nel fianco del dispositivo.

Un esempio di etichetta del prodotto R-KEY-LT è il seguente:

Nell'etichetta è anche riportata la revisione di firmware presente nel dispositivo (in questo caso 2.0.1.0) al momento della vendita, la revisione hardware (in questo caso) è la E00.

Per migliorare le prestazioni o per estendere le funzionalità Seneca consiglia di aggiornare il firmware all'ultima versione disponibile (si veda nel sito www.seneca.it la sezione dedicata al prodotto).

3. TECNOLOGIA FLEX PER IL CAMBIO DI PROTOCOLLO

I dispositivi della serie KEY, a partire dalla revisione hardware indicata nella tabella seguente, includono la tecnologia Flex.

GATEWAY	TECNOLOGIA FLEX SUPPORTATA DALLA REVISIONE HARDWARE
Z-KEY	"G00"
R-KEY-LT	"E00"
Z-KEY-2ETH	"C00"

Flex permette di cambiare a piacimento la combinazione dei protocolli di comunicazione industriale supportati dai gateway tra un elenco di quelli disponibili, lo sviluppo è in continuo aggiornamento, per una lista esaustiva fare riferimento alla pagina:

https://www.seneca.it/flex/

Alcuni esempi di protocolli supportati sono:

Il gateway diventa quindi "universale" e compatibile con i sistemi Siemens oppure Rockwell oppure Schneider etc....senza la necessità di acquistare hardware differenti.

3.1. CAMBIO DEI PROTOCOLLI CON IL SOFTWARE SENECA DISCOVERY DEVICE

Dalla revisione 2.8 il software Seneca Discovery Device individua i dispositivi che supportano la tecnologia "Flex":

erca				
Nome	FLEX	Indirizzo	Mac	Versione
I-KEY-LT-0	400	192.168.90.102	C8:F9:81:0E:4F:C6	2011.206
	Nessun devic	e selezionato		

Ad esempio nel caso in figura è possibile premere il pulsante "Cambio Protocollo" e selezionare il protocollo di destinazione tra quelli in elenco:

즳 Cambia protocollo	×
Protocollo di destinazione (-0) MODBUS SERIAL SERVER <-> MODBUS RTU/ASCII/TCI	р v
(-0) MODBUS SERIAL SERVER <-> MODBUS RTU/ASCII/TC	2
File C:\Users\vianello.SEN (-P) PROFINET IO <-> MODBUS RTU/ASCII/TCP	
(-E) ETHERNET/IP <-> MODBUS RTU/ASCII/TCP	- 1
Al termine dell'aggiornamento, alzare i DIP SWITCH secondo la tabella qui sotto:	
2-KEY / 2-KEY-2ETH R-KEY-LT DIP1 SW1 ON DIP1 SW2 ON DIP2 SW1 ON DIP2 SW2 ON	
Pronto	
Seleziona Avvia	3

Alla fine dell'operazione portare (solo alla prima accensione) i dip 1 e 2 a "ON" per forzare il dispositivo a default (vedi anche il capitolo "RIPRISTINO DEL DISPOSITIVO ALLA CONFIGURAZIONE DI FABBRICA").

Fare sempre riferimento al manuale user del protocollo di comunicazione installato nel dispositivo scaricandolo dal sito Seneca.

4. SIGNIFICATO DEI LED

I dispositivi sono dotati di led il cui significato è il seguente:

4.1. LED MODELLO Z-KEY-C (CLOUD)

LED	STATO
	Acceso fisso: dispositivo alimentato e indirizzo IP impostato
PWR	Lampeggiante: indirizzo IP non ancora impostato
	<i>Spento:</i> dispositivo non alimentato
	Acceso fisso: nessun errore di connessione al cloud
СОМ	<i>Lampeggiante:</i> errore di connessione al cloud (per maggiori dettagli sull'errore fare riferimento alla pagina status del webserver)
	<i>Spento:</i> dispositivo non alimentato
	Lampeggiante: trasmissione dati su porta seriale #1
TX1	
	Spento: nessuna trasmissione su porta seriale #1
	Lampeggiante: ricezione dati su porta seriale #1
RX1	Acceso fisso: verificare il cablaggio della porta seriale #1
	Spento: nessuna ricezione su porta seriale #1
	Lampeggiante: trasmissione dati su porta seriale #2
TX2	
	Spento: nessuna trasmissione su porta seriale #2
	Lampeggiante: ricezione dati su porta seriale #2
RX2	Acceso fisso: verificare il cablaggio della porta seriale #2
	<i>Spento:</i> nessuna ricezione su porta seriale #2
	Lampeggiante: presenza di dati sulla porta ethernet
ETH ACT (VERDE)	Acceso fisso: porta ethernet connessa ma nessuna presenza di dati
	Spento: verificare il cablaggio della porta ethernet

ETH LNK	Acceso fisso: cavo ethernet connesso
(GIALLO)	Spento: verificare il cablaggio della porta ethernet

LED MODELLO R-KEY-LT-C (CLOUD)

LED	STATO
	Acceso fisso: dispositivo alimentato e indirizzo IP impostato
PWR	Lampeggiante: indirizzo IP non ancora impostato
	Spento: dispositivo non alimentato
	Acceso fisso: nessun errore di connessione al cloud
СОМ	<i>Lampeggiante:</i> errore di connessione al cloud (per maggiori dettagli sull'errore fare riferimento alla pagina status del webserver)
	Spento: dispositivo non alimentato
	Lampeggiante: trasmissione dati su porta seriale
ТХ	Spento: nessuna trasmissione su porta seriale
	Lampeggiante: ricezione dati su porta seriale
RX	Acceso fisso: verificare il cablaggio della porta seriale
	Spento: nessuna ricezione su porta seriale
	Lampeggiante: presenza di dati sulla porta ethernet
ETH AG (VERDE)	Acceso fisso: porta ethernet connessa ma nessuna presenza di dati
	Spento: verificare il cablaggio della porta ethernet
ЕТН И	K Acceso fisso: cavo ethernet connesso
(GIALLO)	Spento: verificare il cablaggio della porta ethernet

LED MODELLO Z-KEY-2ETH-C (CLOUD)

LED	STATO
	Acceso fisso: dispositivo alimentato e indirizzo IP impostato
PWR	Lampeggiante: indirizzo IP non ancora impostato
	Spento: dispositivo non alimentato
	Acceso fisso: nessun errore di connessione al cloud
СОМ	<i>Lampeggiante:</i> errore di connessione al cloud (per maggiori dettagli sull'errore fare riferimento alla pagina status del webserver)
	Spento: dispositivo non alimentato
	Lampeggiante: trasmissione dati su porta seriale #1
TX1	<i>Spento:</i> nessuna trasmissione su porta seriale #1
	Lampeggiante: ricezione dati su porta seriale #1
RX1	Acceso fisso: verificare il cablaggio della porta seriale #1
	<i>Spento:</i> nessuna ricezione su porta seriale #1
	Lampeggiante: trasmissione dati su porta seriale #2
TX2	<i>Spento:</i> nessuna trasmissione su porta seriale #2
	Lampeggiante: ricezione dati su porta seriale #2
RX2	Acceso fisso: verificare il cablaggio della porta seriale #2
	<i>Spento:</i> nessuna ricezione su porta seriale #2
	Lampeggiante: presenza di dati sulla porta ethernet #1
ET1	Acceso fisso: porta ethernet #1 connessa ma nessuna presenza di dati
	Spento: verificare il cablaggio della porta ethernet #1
	Lampeggiante: presenza di dati sulla porta ethernet #2
ET2	Acceso fisso: porta ethernet #2 connessa ma nessuna presenza di dati
	Spento: verificare il cablaggio della porta ethernet #2

5. PORTA ETHERNET

La configurazione di fabbrica della porta ethernet è:

IP STATICO: 192.168.90.101 SUBNET MASK: 255.255.255.0 GATEWAY: 192.168.90.1

Non devono essere inseriti più dispositivi sulla stessa rete con lo stesso ip statico.

ATTENZIONE! NON CONNETTERE 2 O PIU' DISPOSITIVI CON LA CONFIGURAZIONE DI FABBRICA SULLA STESSA RETE ETHERNET PENA IL NON FUNZIONAMENTO DEL DISPOSITIVO (CONFLITTO DI INDIRIZZI IP 192.168.90.101)

6. AGGIORNAMENTO FIRMWARE

Al fine di migliorare, aggiungere o ottimizzare le funzionalità del prodotto, Seneca rilascia dei firmware aggiornati sulla sezione del dispositivo nel sito internet <u>www.seneca.it</u>

L' aggiornamento firmware viene effettuato tramite i tool Seneca oppure tramite il webserver.

ATTENZIONE! PER NON DANNEGGIARE IL DISPOSITIVO NON TOGLIERE ALIMENTAZIONE DURANTE L'OPERAZIONE DI AGGIORNAMENTO DEL FIRMWARE.

7. MODALITA' DI FUNZIONAMENTO

Il Gateway funziona nella modalità:

MODBUS SERIALE-ETHERNET MASTER/CLIENT TO CLOUD

7.1. MODBUS MASTER / CLIENT TO CLOUD

Questa modalità di funzionamento permette di caricare dati da I/O di tipo Modbus RTU/ASCII Slave e/o TCP Server remoti verso un cloud (e vice versa).

Qui sotto alcuni esempi di connessione possibili:

Il Gateway, nella parte di campo funziona come un dispositivo Modbus master / Modbus Client e dall' altra parte come un client verso il broker MQTT o server HTTP tramite ethernet.

Le richieste Modbus (comandi di lettura o scrittura) vengono configurate nel dispositivo gateway.

Oltre ai dispositivi seriali è anche possibile connettere fino 3 Modbus TCP-IP server remoti.

È anche possibile scrivere i registri Modbus dal cloud.

Il Gateway contemporaneamente attiva sempre un modbus TCP-IP server.

7.2. DIAGNOSTICA SEMPLIFICATA DEI TAG

La diagnostica dei tag è disponibile solo nella modalità Modbus TAGs Gateway.

La diagnostica dei tag è visualizzabile anche tramite le porte seriali e ethernet Modbus: tramite appositi registri Modbus.

Il primo indirizzo Modbus, da cui parte la diagnostica semplificata, è di default il 49001 (Holding Register 9000). Ogni bit rappresenta un tag con il seguente significato:

1 = TAG OK

0 = TAG FAIL

Il bit meno significativo è lo stato del tag nr 1

Il successivo è lo stato del tag nr 2 e così via...

Per esempio la lettura dei seguenti registri:

49001 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

49002 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Significa: TAG 1, TAG 4, TAG17, TAG 18, TAG 19, TAG 20 OK, tutti gli altri in FAIL.

All'avvio tutti i tag sono in stato di fail (tutti a 0).

7.3. DIAGNOSTICA ESTESA DEI TAG

La diagnostica dei tag è disponibile solo nella modalità Modbus TAGs Gateway.

Quando un tag è in stato di errore è possibile avere maggiori informazioni utilizzando la diagnostica estesa.

La diagnostica estesa riserva 1 byte per ciascun tag (poiché il limite è di 500 tag, ci sono 500 byte = 250 registri Modbus per la diagnostica estesa).

Questa diagnostica si trova alla fine della diagnostica semplificata (indirizzo Modbus di partenza di default è il 49033, Holding register 32).

Ogni registro Modbus contiene 2 tag, quindi ad esempio:

49033 TAG02_TAG01 49034 TAG04_TAG03 ... 49282 TAG500_TAG499 49283 LAST_LOOP_TIME_COM1 [x1 ms] 49284 LAST_LOOP_TIME_COM2 [x1 ms]

Il significato del byte di diagnostica avanzata è:

VALORE BYTE	SIGNIFICATO	NOTE
0	OK	Il tag è correttamente letto/scritto
1	TIMEOUT	La risposta del tag è in timeout, ma verrà
		interrogato di nuovo
2	DELAYED	Troppi fail, il polling del tag è ritardato (il tag
		sarà interrogato nuovamente dopo il tempo di
		quarantena configurato)
3	EXCEPTION	Risposta di eccezione del Modbus ma il tag
		verrà interrogato di nuovo
4	CRC ERRORE	Risposta di eccezione del Modbus CRC ma il
		tag verrà interrogato di nuovo

Per esempio:

49033 0x0000 49034 0x0002

Significa che:

I TAG 1 e 2 sono OK (0x00 e 0x00) II TAG 03 è in stato di ritardo (0x02) II TAG 4 è OK (0x00)

LAST_LOOP_TIME_COMx è un registro che contiene l'ultimo tempo di interrogazione di tutti i tag seriali (in quanti di 10 ms) quindi, per esempio:

49283 2549284 42

Significa che il loop della seriale 1 è stato di 250ms, il loop della seriale 2 è stato di 420ms.

8. WEBSERVER DEI GATEWAY "-C"

8.1. GUIDA PASSO PASSO PER IL PRIMO ACCESSO AL WEBSERVER

PASSO 1: ALIMENTARE IL DISPOSITIVO E COLLEGARE LA PORTA ETHERNET, PORTARE IL DISPOSITIVO IN MODALITA' WEBSERVER

PASSO 2 SOFTWARE SENECA DISCOVERY DEVICE

Se è necessario cambiare l'indirizzo IP del dispositivo (default 192.168.90.101), lanciare il software Seneca Discovery Device ed eseguire lo SCAN, selezionare il dispositivo e premere il pulsante "Assign IP", impostare una configurazione compatibile con il proprio PC, ad esempio:

😸 AssignIP		×
DHCP		
IP		
192.168.1.101		
Netmask		
255.255.255.0		
Gateway		
192.168.1.1		
	OK Stop	

Confermare con OK. Ora il dispositivo è raggiungibile via ethernet dal proprio pc.

PASSO 3 ACCESSO AL WEBSERVER DI CONFIGURAZIONE

Inserire le credenziali di accesso: user: admin password: admin

ATTENZIONE!

I WEB BROWSER DI CUI È STATA TESTATA LA COMPATIBILITA' CON IL WEBSERVER DEL DISPOSITIVO SONO: MOZILLA FIREFOX E GOOGLE CHROME. NON È, QUINDI, ASSICURATO IL FUNZIONAMENTO CON ALTRI BROWSER

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

9. CONFIGURAZIONE DEL DISPOSITIVO DA WEBSERVER

ATTENZIONE!

I WEB BROWSER DI CUI È STATA TESTATA LA COMPATIBILITA' CON IL WEBSERVER DEL DISPOSITIVO SONO: MOZILLA FIREFOX E GOOGLE CHROME.

NON È, QUINDI, ASSICURATO IL FUNZIONAMENTO CON ALTRI BROWSER

ATTENZIONE!

DOPO IL PRIMO ACCESSO CAMBIARE USER NAME E PASSWORD AL FINE DI IMPEDIRE L'ACCESSO AL DISPOSITIVO A CHI NON È AUTORIZZATO.

ATTENZIONE!

SE I PARAMETRI DI ACCESSO AL WEBSERVER SONO STATI SMARRITI, PER ACCEDERE AL WEBSERVER, È NECESSARIO EFFETTUARE LA PROCEDURA DI RISPRISTINO ALLA CONFIGURAZIONE DI FABBRICA

9.1. PAGINA DI SETUP

Scegli file Nessu	Load conf file	
Save conf file		
	CURRENT	UPDATED
ETHERNET DHCP	Disabled	Disabled 🗸
ETHERNET STATIC IF	192.168.90.101	192.168.90.101
ETHERNET STATIC IP MASK	265.265.265.0	255.255.255.0
ETHERNET STATIC GATEWAY	192.168.90.1	192.168.90.1
WORKING MODE	MODBUS GATEWAY ON PORT#1	MODBUS GATEWAY ON PORT#1
TIMEOUT RESPONSE MODE	NONE	NONE 🗸
TCP/IP PORT	602	502

La prima colonna rappresenta il nome del parametro, la seconda colonna "current" è il valore corrente del parametro. L'ultima colonna "updated" è utilizzata per modificare la configurazione corrente.

Quando una configurazione è stata inserita è necessario confermarla con il pulsante "APPLY", a questo punto la nuova configurazione è operativa.

Se si desidera ripristinare i parametri di default, cliccare sul pulsante "FACTORY DEFAULT".

9.1.1. PARAMETRI DI CONFIGURAZIONE GENERALI

I parametri di configurazione generale sono spiegati di seguito:

DHCP

Disattivato: Viene impostato una Configurazione di Rete statica Attivato: L'indirizzo IP, la maschera IP e l'indirizzo del gateway sono ottenuti dal server DHCP. L'indirizzo del gateway può essere individuato dal software Seneca Discovery Device.

ETHERNET STATIC IP

Indirizzo IP statico quando il DHCP è disabilitato

ETHERNET STATIC IP MASK Maschera quando il DHCP è disabilitato

ETHERNET STATIC GATEWAY

Indirizzo del gateway quando il DHCP è disabilitato

TCP/IP PORT

Porta TCP-IP per protocollo Modbus TCP-IP Server (È possibile collegare al gateway fino ad un massimo di 8 client)

PORT#n MODBUS PROTOCOL

Seleziona il protocollo seriale Modbus RTU o ASCII

PORT#n BAUDRATE

Seleziona il baudrate della porta seriale

PORT#n BIT

Seleziona il numero di bit per la comunicazione seriale.

PORT#n PARITY

Seleziona il tipo di parità della porta seriale (Nessuna, Pari o Dispari)

PORT#n STOP BITS

Imposta il numero di bit di stop della porta (1 o 2), si noti che se la parità è impostata, può essere utilizzato solo 1 bit di stop.

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

Page 20

PORT#n TIMEOUT [ms]

Imposta il tempo di attesa per una risposta dal dispositivo seriale modbus slave, dopo questo tempo senza alcuna risposta si avrà un TIMEOUT.

PORT#n DELAY BETWEEN POLLS [ms]

Imposta la pausa tra due richieste Modbus master seriali successive.

PORT#n WRITING RETRIES (Solo per Modalità Gateway Tags Modbus)

Imposta il numero di tentativi di scrittura sul (o sui) TAG prima di impostare lo stato di FAIL.

PORT#n MAX READ NUM (Solo per Modalità Gateway Tags Modbus)

Imposta il Massimo numero di registri che possono essere letti con le funzioni di lettura multipla (il gateway ottimizzerà le letture con al massimo questo numero di registri). Va regolato in base al massimo numero di registri che si possono essere letti contemporaneamente dal dispositivo slave.

PORT#1 MAX WRITE NUM (Solo per Modalità Gateway Tags Modbus)

Imposta il Massimo numero di registri che possono essere scritti con le funzioni di scrittura multipla (il gateway ottimizzerà le scritture con al massimo questo numero di registri).

WEB SERVER PORT

Imposta la porta TCP-IP per il Webserver.

WEB SERVER AUTHENTICATION USER NAME

Imposta il nome utente per l'accesso al Webserver (se nome utente e password sono lasciati vuoti non è necessaria alcuna autenticazione per l'accesso al Webserver)

WEB SERVER AUTHENTICATION PASSWORD

Imposta la password per l'accesso al Webserver (se nome utente e password sono lasciati vuoti non è necessaria alcuna autenticazione per l'accesso al Webserver)

ATTENZIONE!

CAMBIARE NEL WEBSERVER IL NOME UTENTE E LA PASSWORD DI DEFAULT PER LIMITARNE L'ACCESSO.

ATTENZIONE!

SE SI LASCIANO VUOTE LE DUE CASELLE DI TESTO DEI PARAMETRI L'AUTENTICAZIONE PER L'ACCESSO VIENE TOLTA.

WEBSERVER HTTPS

Forza il webserver ad usare il protocollo https sicuro invece che quello http

ETHERNET IP CHANGE FROM DISCOVERY

Imposta per impostare se un utente è autorizzato a modificare la configurazione IP dal software "Seneca Discovery Device".

DIAGNOSTIC REGISTERS MAPPING

Imposta il tipo di registro che conterrà la diagnostica semplificata ed avanzata. È possibile selezionare tra holding registers o input registers.

DIAGNOSTIC REGISTER START ADDRESS

Imposta l'indirizzo di partenza per i registri di diagnostica (default offset 9000 -> 49001 in caso di holding registers o 39001 in caso di input registers)

PORT #n TAGS QUARANTINE [s]

Quando un TAG è in FAIL questo viene messo in quarantena e non viene più interrogato per il tempo impostato.

MODBUS TCP-IP CLIENT

Abilita o meno i client Modbus TCP-IP, il gateway può collegarsi ad un massimo di 3 server Modbus TCP-IP.

TCP-IP PORT SERVER #n (Solo se attivo il Modbus TCP-IP client)

Utilizzato per impostare la porta #n del server TCP-IP

TCP-IP ADDRESS SERVER #n (Solo se attivo il Modbus TCP-IP client)

Utilizzato per impostare l'indirizzo IP del server #n

MODBUS TCP-IP CLIENT TIMEOUT [ms] (Solo se attivo il Modbus TCP-IP client)

Utilizzato per impostare il timeout di connessione per i client Modbus TCP-IP.

MODBUS TCP-IP CLIENT DELAY BETWEEN POLLS [ms] (Solo se attivo il Modbus TCP-IP client)

Imposta la pausa tra due richieste Modbus TCP-IP client successive.

MODBUS TCP-IP CLIENT WRITING RETRIES (Solo se attivo il Modbus TCP-IP client)

Imposta il numero di tentativi di scrittura sul (o sui) TAG prima di impostare lo stato di FAIL.

MODBUS TCP-IP CLIENT MAX READ NUM (Solo se attivo il Modbus TCP-IP client)

Imposta il Massimo numero di registri che possono essere letti con le funzioni di lettura multipla (il gateway ottimizzerà le letture con al massimo questo numero di registri).

MODBUS TCP-IP CLIENT MAX WRITE NUM (Solo se attivo il Modbus TCP-IP client)

Imposta il Massimo numero di registri che possono essere scritti con le funzioni di scrittura multipla (il gateway ottimizzerà le scritture con al massimo questo numero di registri).

WATCHDOG ENABLE

Abilita o no il riavvio a tempo del gateway.

WATCHDOG TIMEOUT [ore]

Imposta il tempo in ore dopo il quale il gateway si riavvierà (solo in caso il parametro WATCHDOG ENABLE sia attivato).

SYNC CLOCK WITH INTERNET TIME

Permette di attivare l'aggiornamento della data/ora tramite la connessione ai server NTP (RFC 5905).

ATTENZIONE!

AD OGNI SPEGNIMENTO IL DISPOSITIVO DEVE POTER RECUPERARE LA DATA / ORA DA UN SERVER NTP ALTRIMENTI QUESTA SARA' IMPOSTATA A 1/1/1970 0:00

NTP SERVER 1 ADDRESS

È l'indirizzo IP del primo server NTP (ad esempio 193.204.114.232 per l'NTP dell'INRIM)

NTP SERVER 2 ADDRESS

È l'indirizzo IP del secondo server NTP (nel caso il primo non risponda)

ATTENZIONE!

SI RICORDA CHE I SERVER NTP UTILIZZANO LA PORTA UDP 123 (CHE DEVE QUINDI ESSERE APERTA NELLA CONFIGURAZIONE DELLA RETE UTILIZZATA)

9.2. PAGINA SETUP TAG

Nella modalità Modbus Tags Gateway è necessario definire i tag (ovvero le variabili) Modbus, per far questo è possibile utilizzare:

- Il webserver
- Un template excel

Nel caso di configurazioni complesse è più semplice utilizzare le ultime due.

In questo capitolo verrà spiegata la configurazione del tag dal webserver.

Per editare i TAG tramite webserver accedere alla sezione "Setup tag" del menù di navigazione:

	CURRENT	UPDATED	
GATEWAY TAG NAME	TAG	TEST1	
GATEWAY MODBUS START REGISTER ADDRESS	1	27	Equivalent to the address in the Seneca documentation : 40027
TARGET MODBUS DEVICE	CUSTOM	Z-4-Al-1 🗸	
TARGET RESOURCE		IN1 V	
TARGET CONNECTED TO	PORT#1	PORT#1 V	
TARGET MODBUS STATION ADDRESS	1	1	
TARGET MODBUS START REGISTER ADDRESS	1	17	Equivalent to the address in the Seneca documentation : 40017
TARGET MODBUS REQUEST TYPE	Holding Register	HOLDING REGISTER V	
TARGET REGISTER DATA TYPE	32BIT SIGNED MSW	16BIT UNSIGNED V	
		APPLY	

GATEWAY TAG NAME

Imposta il nome mnemonico del tag (verrà visualizzato nella visualizzazione in tempo reale)

GATEWAY MODBUS START REGISTER ADDRESS

Imposta l'indirizzo della posizione di memoria del Gateway in cui è salvato il TAG, questi registri sono accessibili sia da Modbus seriale che da Modbus TCP-IP.

TARGET MODBUS DEVICE

Seleziona il modello di Modbus RTU slave da database dei dispositivi Seneca o seleziona "custom" se non si utilizza uno slave Modbus RTU Seneca.

TARGET RESOURCE

Se si utilizza un Seneca Modbus RTU Slave seleziona il nome della risorsa dal database Seneca.

TARGET CONNECTED TO PORT#

Selezionare a quale porta seriale del gateway è collegato il dispositivo slave modbus rtu. (nel caso di R-KEY-LT è disponibile solo la porta COM 1).

TARGET MODBUS STATION ADDRESS

Definisce il Modbus Station Address (chiamato anche indirizzo del nodo Modbus) del dispositivo slave.

TARGET MODBUS START REGISTER ADDESS

Definisce il registro di partenza del TAG da acquisire dello slave Modbus RTU.

TARGET MODBUS REQUEST TYPE

Selezionare il tipo di registro Modbus: Coil Discrete Input Holding Register Input Register

TARGET REGISTER DATA

Selezionare il tipo di variabile TAG:

16 BIT UNSIGNED: 1 registro modbus, da 0 a 65535

16 BIT SIGNED: 1 registro modbus, da -32768 a +32767

32 BIT UNSIGNED MSW: 2 registri modbus il cui registro Modbus con l'indirizzo inferiore contiene la word più significativa, può assumere valori da 0 a 4294967295

32 BIT UNSIGNED LSW: 2 registri modbus il cui registro Modbus con l'indirizzo inferiore contiene la word meno significativa, può assumere valori da 0 a 4294967295

32 BIT SIGNED MSW: 2 registri modbus il cui registro Modbus con l'indirizzo inferiore contiene la word più significativa, può assumere valori da -2147483648 a +2147483647

32 BIT SIGNED LSW: 2 registri modbus il cui registro Modbus con l'indirizzo inferiore contiene la word meno significativa, può assumere valori da -2147483648 a +2147483647

FLOAT MSW: 2 registri modbus il cui registro Modbus con l'indirizzo inferiore contiene la word più significativa, valore a virgola mobile a singola precisione (IEEE 758-2008)

FLOAT LSW: 2 registri modbus il cui registro Modbus con l'indirizzo inferiore contiene la word meno significativa, valore a virgola mobile a singola precisione (IEEE 758-2008)

BIT: 1 Coil booleano o Discrete Input, valore true o false.

N.B. Questo campo viene compilato automaticamente se nel campo "TARGET MODBUS DEVICE" è stato selezionato un dispositivo slave Seneca.

ATTENZIONE!

Tutti i valori di 32 bit sono memorizzati in 2 registri consecutivi, ad esempio: Il Totalizzatore TAG 1 in tipo MSW unsigned a 32 bit è memorizzato negli indirizzi 40016 e 40017: La parola più significativa è il 40016, quella meno significativa è il 40017. Quindi il valore a 32bit si ottiene dalla seguente relazione: Totalizer1 = (40017) + (Reg (40016) × 65536)

L'impostazione dei tag può essere importata/esportata da/verso un file ". cgi":

Si noti che un file. cgi può anche essere importato/esportato da/verso il template Excel.

È anche possibile aggiungere, modificare, cancellare o spostare un tag.

9.2.1. VISTA IN TEMPO REALE DEL MODBUS GATEWAY

Una volta che i TAG sono configurati è possibile visualizzare in tempo reale lo stato della comunicazione Modbus, dalla sezione Status del menù di navigazione.

La visualizzazione in tempo reale mostrerà la corrente configurazione di rete, la modalità di funzionamento e le informazioni sui TAGS.

SENECA®	R-KEY-LT-I	HW3 St	atus	Firmv	vare Versio	n : 1800_123			
Status			DHCP :	Disabled					
Setup	ACT	rual ip ac	DDRESS :	192.168.	90.101				
Setup TAG		ACTUAL I	P MASK :	255.255.	255.0				
Firmware Update	ACTUAL GA	TEWAY A	DDRESS:	192.168.	90.1				
Serial Traffic Monitor	ACTU	AL MAC A	DDRESS:	c8-f9-81	-0e-1e-11				
	WORKING MODE: Modbus Tags Gateway Ethernet to Serial (PORT#1 MASTER)								
PORT#1 LOOP TIME [ms]: 601									
	PORT#	#2 LOOP T	IME [ms]:	0					
				REBO	от				
Page: 1/10 PREVIOUS PAGE NEXT PAGE									
	GATEWAY TAG NR	GATEW/ TAG NAI	GA AY MO ME S RE	TEWAY ODBUS START GISTER	TAG DATA TYPE	TAG VALUE	TAG READING STATUS		
	1	BICI	4	40001	16BIT UNSIGNED	0	DELAYED	CHANGE	

Le informazioni sui Tags includono: Il nome del TAG, l'indirizzo Modbus del Gateway TAG, il valore del Tag e lo stato del TAG:

OK = TAG privo di errori FAIL_TO = Timeout Lettura del TAG DELAYED = Raggiunto il numero di retry impostato, il polling del tag è ritardato (il tag sarà interrogato nuovamente dopo il tempo di quarantena configurato) EXC = risposta di eccezione del protocollo Modbus

9.3. PAGINA CLOUD (SOLO PER MODALITA' MODBUS TAGS GATEWAY)

In questa pagina è possibile configurare la connessione verso il cloud dei Tag configurati.

CLOUD PROTOCOL

Seleziona il protocollo da usare tra MQTT e http

CLOUD PERIODIC SENDING INTERVAL [s]

Seleziona il tempo di invio dei tag verso il cloud

CLOUD SERVER ADDRESS

Seleziona l'indirizzo del cloud a cui ci si deve connettere

CLOUD SERVER PORT

Seleziona la porta del server

MQTT CLIENT ID/HTTP PATH

Definisce il Client ID usato nel protocollo MQTT o la path di pubblicazione sul server HTTP

MQTT WEBSOCKET

Permette di attivare la comunicazione MQTT tramite Websockets

MQTT KEEP ALIVE INTERVAL [s]

Questo parametro definisce il Keep alive il quale assicura che la connessione tra il broker e il client sia ancora aperta e che il broker e il client siano consapevoli di essere connessi. Quando il client stabilisce una connessione al broker, comunica al broker un intervallo di tempo in secondi. Questo intervallo definisce il periodo di tempo massimo durante il quale il broker e il client possono non comunicare tra loro.

MQTT CLEAN SESSION

Questo parametro definisce la "clean session". Quando il flag di clean session è impostato su true, il client non desidera una sessione persistente. Se il client si disconnette per qualsiasi motivo, tutte le informazioni e i messaggi accodati da una precedente sessione vengono persi.

MQTT MESSAGE RETAIN

Normalmente se un publisher pubblica un messaggio su un topic a cui nessuno è sottoscritto, il messaggio viene semplicemente scartato dal broker. Tuttavia il publisher può dire al broker di conservare l'ultimo messaggio di quel topic

MQTT QUALITY OF SERVICE [QOS]

Questo parametro definisce il QOS del protocollo MQTT. Può essere selezionato tra QOS 0 (solo una volta, senza ack) QOS 1 (almeno una volta, con ack) QOS 2 (solo una volta, con ack e rinvio)

CLOUD AUTHENTICATION

Questo parametro definisce se deve essere utilizzata l'autenticazione con utente / password per l'accesso al cloud

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

CLOUD AUTHENTICATION USER

Username del broker o server

CLOUD AUTHENTICATION PASSWORD

Password del broker o server

CLOUD SSL/TLS

Definisce se attivare il protocollo criptato di sicurezza SSL/TLS 1.2

CLOUD CLIENT CERTIFICATE REQUIRED

Definisce se è necessario gestire i certificati x.509 per la connessione SSL/TLS

CLOUD CLIENT CERTIFICATE VALIDITY CHECK

Se attivato verifica che i certificati siano validi

CLOUD LOG ON CHANGE

Aggiorna i valori sul broker o server solo su cambiamento e non più a tempo

CLOUD PUBLISH MULTIPLE TAGS

Per il protocollo MQTT questo parametro definisce se la publish contiene più tag o se il dispositivo deve inviare una publish per ciascun tag. Per il protocollo HTTP questo parametro definisce se la post contiene più tag o se il dispositivo deve inviare una post per ciascun tag.

CLOUD PUBLISH TOPIC FOR LOGS

Seleziona il nome del topic per i log utilizzando la seguente tabella:

%с	Device Client ID
%m	Device MAC Address
%j[field]	Aggiunge i doppi apici " a [field]. I doppi apici rappresentano una stringa in JSON

Ad esempio:

Se: Device Client ID = Padova13 Publish Topic for Logs = seneca/%c/data

Si avrà che i log dei dati sono inviati al topic: Seneca/Padova13/data

CLOUD PUBLISH PAYLOAD FOR LOGS

Seleziona il formato che deve essere utilizzato per il payload utilizzando la seguente tabella:

%с	Device Client ID					
%m	Device MAC Address					
%d	data-ora					
%t	timestamp (numero di secondi dal 01/01/1970)					
%tms	timestamp (numero di millisecondi dal 01/01/1970)					
%b	bulk (formato specificato in "Publish Bulk Format") Nome del tag (solo per "Publish Bulk Format")					
%n						
%i	Id univoco della variabile					
%v	Valore del tag (solo in "Publish Bulk Format") d] Aggiunge i doppi apici " a [field]. I doppi apici rappresentano una stringa in JSO					
%j[field]						

Nota: il placeholder %i aggiunge un ID univoco alla varaibile da pubblicare secondo l'ordine del TAG (vedi pagina Tag view)

CLOUD PUBLISH BULK FORMAT

Seleziona il formato per il "bulk mode" secondo la seguente tabella:

%с	Device Client ID				
%m	Device MAC Address				
%d	Data/ora				
%t	timestamp (numero di secondi dal 01/01/1970)				
%n	Nome del tag (solo per "Publish Bulk Format")				
%v	Valore del tag (solo in "Publish Bulk Format")				
%j[field]	Aggiunge i doppi apici " a [field]. I doppi apici rappresentano una stringa in JSON				

CUSTOM CLOUD

Nel caso sia selezionato il cloud protocol MQTT è possibile scegliere tra i cloud:

Direl e ONBOARD

Attualmente è possibile configurare:

Generic: Tramite la configurabilità di MQTT del dispositivo è possibile virtualmente connettersi ad ogni cloud *Direl ADM*: Imposta il dispositivo per la connessione con il cloud Direl ADM *On-Board*: Imposta il dispositivo per la connessione con il cloud On-Board

Per aggiungere alla lista altri cloud è possibile formulare una richiesta a Seneca.

9.3.1. DIREL ADM4.0

I parametri per il cloud di Direl (<u>https://www.direl.it/</u>) sono i seguenti:

Campo	Significato
Enable	Abilita o no la connessione con il cloud Direl ADM4.0
Username for Commands	È la username per l'accesso in scrittura dal cloud verso il dispositivo
Password for Commands	È la password per l'accesso in scrittura dal cloud verso il dispositivo

9.3.2. ONBOARD

Onboard è il cloud di innovation system s.r.l., per maggiori informazioni fare riferimento al sito: <u>https://www.onsystem-iot.com/onboard</u>

I parametri per la connessione sono:

Campo	Significato
Enable	Abilita o no la connessione con il cloud Onboard
Username	È la username per l'accesso al cloud
Password	È la password per l'accesso al cloud

CLOUD SUBSCRIBE TOPIC FOR COMMANDS

Per scrivere un tag tramite MQTT, il dispositivo deve ricevere una PUBLISH dal cloud stesso con il formato indicato in questo campo.

MQTT CA CERTIFICATE FILE (.pem)

File che rappresenta il Root CA Certificate in formato .pem

MQTT/HTTP SERVER CERTIFICATE FILE (.pem)

File che rappresenta il Client Certificate in formato .pem

MQTT CLIENT PRIVATE KEY FILE (.pem)

File che rappresenta la chiave del Client in formato .pem

9.4. PAGINA CERTIFICATE/DATABASE UPDATE

In questa pagina è possibile caricare nel dispositivo i certificati X.509 per il webserver (se attivata la modalità https) e aggiornare il database dei dispositivi Seneca.

10. RIPRISTINO DEL DISPOSITIVO ALLA CONFIGURAZIONE DI FABBRICA

La configurazione di fabbrica riporta tutti i parametri a default.

Per ripristinare il dispositivo alla configurazione di fabbrica è necessario seguire la seguente procedura:

Z-KEY-C / Z-KEY-2ETH-C:

- 1) Togliere alimentazione al dispositivo
- 2) Portare i dip switch 1 e 2 ad ON
- 3) Alimentare il dispositivo per almeno 10 secondi
- 4) Togliere alimentazione al dispositivo
- 5) Portare i dip switch 1 e 2 ad OFF
- 6) Al prossimo riavvio il dispositivo avrà caricata la configurazione di fabbrica

R-KEY-LT-C:

- 1) Togliere alimentazione al dispositivo
- 2) Portare i dip switch 1 e 2 di SW2 ad ON
- 3) Alimentare il dispositivo per almeno 10 secondi
- 4) Togliere alimentazione al dispositivo
- 5) Portare i 2 dip switch di SW2 ad OFF
- 6) Al prossimo riavvio il dispositivo avrà caricata la configurazione di fabbrica

11. TEMPLATE EXCEL

La preparazione della configurazione dei Tag può essere un'operazione frustrante se viene effettuata con il webserver, per cui è disponibile un software ed un template Microsoft Excel[™] per creare un file .bin da importare nel gateway o vice versa. Il modello può essere liberamente scaricato dal sito web Seneca.

	А	В	С	D	E	F	G	н	1	J	К	L	М	
1	MODBUS TCP/IP			SERIAL MODBUS RTU					Evo	ort CGL				
2	TAG NR	GATEWAY TAG NAME	GATEWAY MODBUS TCP/IP REGISTER ADDRESS	TARGET MODBUS RTU REGISTER TYPE	TARGET MODBUS RTU DATA TYPE	TARGET CONNECTED TO SERIAL PORT NR	TARGET MODBUS RTU START REGISTER	TARGET MODBUS RTU SLAVE ADDRESS	Imp SENECA	ort CGI ile ile Z-KEY TAG	S TEMPLAT	SEN E FOR GATE	ECA"	E
3	1	TAG1	1	HOLDING REGISTER	UINT16	#1	3	2						
4	2	TAG2	2	HOLDING REGISTER	UINT16	#1	4	2						
5	3	TAG3	3	HOLDING REGISTER	UINT16	#1	5	2						
6	4	TAG4	5	HOLDING REGISTER	UINT16	#1	6	2						
7	5	TAG5	7	HOLDING REGISTER	UINT16	#1	7	2						
8	6	TAG6	8	HOLDING REGISTER	UINT16	#1	8	2						
9	7	TAG7	9	HOLDING REGISTER	UINT16	#1	9	2						
10	8	TAG8	10	HOLDING REGISTER	UINT16	#1	10	2						
11	9	TAG9	1	COIL	BIT	#1	1	3						
12	10	TAG10	2	COIL	BIT	#1	2	3						
13	11	TAG11	3	COIL	BIT	#1	3	3						
14	12	TAG12	4	COIL	BIT	#1	4	3						
15	13	TAG13	5	COIL	BIT	#1	5	3						
16	14	TAG14	6	COIL	BIT	#1	6	3						
17	15	TAG15	7	COIL	BIT	#1	7	3						
18	16	TAG16	8	COIL	BIT	#1	8	3						
19	17	TAG17	14	HOLDING REGISTER	INT16	#1	13	4						
20	18	TAG18	15	HOLDING REGISTER	INT16	#1	14	4						
21	19	TAG19	16	HOLDING REGISTER	INT16	#1	15	4						
22	20	TAG20	17	HOLDING REGISTER	INT16	#1	16	4						
23	21	TAG21	1	DISCRETE INPUT	BIT	#1	1	5						
24	22	TAG22	2	DISCRETE INPUT	BIT	#1	2	5						
25	23	TAG23	3	DISCRETE INPUT	BIT	#1	3	5						

12. SERIAL TRAFFIC MONITOR

La pagina Serial Traffic Monitor del webserver mostra i pacchetti seriali che il gateway sta ricevendo e trasmettendo per il debug della linea:

l	START/S	TOP TRAF	FIC MONITOR ENABLED	
	116	RECEIVE	01 03 00 00 00 01 84 0a	1
	14	SEND	01 03 02 12 34 b5 33	I
	114	RECEIVE	01 03 00 00 00 01 84 0a	I
	16	SEND	01 03 02 12 34 b5 33	I
	112	RECEIVE	01 03 00 00 01 84 0a	1
	18	SEND	01 03 02 12 34 b5 33	1
	109	RECEIVE	01 03 00 00 00 184 0a	ł
	11	SEND	01 03 02 12 34 b5 33	
	117	RECEIVE	01 03 00 00 00 184 0a	
	13	SEND	01 03 02 12 34 b5 33	
	115	RECEIVE	01 03 00 00 00 184 0a	
	15	SEND	01 03 02 12 34 b5 33	
	113	RECEIVE	01 03 00 00 00 184 0a	
	17	SEND	01 03 02 12 34 b5 33	
	110	RECEIVE	01 03 00 00 00 184 0a	
	20	SEND	01 03 02 12 34 b5 33	
	108	RECEIVE	01 03 00 00 01 84 0a	
	12	SEND	01 03 02 12 34 b5 33	
	116	RECEIVE	01 03 00 00 00 184 0a	
	14	SEND	01 03 02 12 34 b5 33	
	114	RECEIVE	01 03 00 00 00 184 0a	
	16	SEND	01 03 02 12 34 b5 33	
	111	RECEIVE	01 03 00 00 01 84 0a	
	19	SEND	01 03 02 12 34 b5 33	
	109	RECEIVE	01 03 00 00 01 84 0a	,

La prima colonna è il ritardo in millisecondi dall'ultimo pacchetto, la seconda colonna è il verso del pacchetto (ricevuto da o trasmesso a), l'ultima colonna è il contenuto del pacchetto in formato esadecimale. Viene visualizzato solo il flusso ModBUS seriale.

Il Traffic Monitor mostra tutti i pacchetti ricevuti dalla linea seriale, ad esempio se si tratta di uno slave seriale con una risposta errata del Modbus:

Il Traffic Monitor visualizzerà anche i pacchetti difettosi in giallo (per esempio un master seriale con baud rate errato):

10	SEND	01 03 02 12 34 05 33
988	RECEIVE	01 03 00 00 00 01 84 0a
12	SEND	01 03 02 12 34 b5 33
20990	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14994	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14100	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0
14897	INVALID RECEIVE	20 e0 20 e0 20 e0 20 e0

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

13. INSTALLAZIONE DI PIÙ DISPOSITIVI IN UNA RETE UTILIZZANDO IL "DHCP FAIL ADDRESS".

Quando II Gateway è configurato con il DHCP attivato ma non riceve la configurazione del DHCP server entro 2 minuti allora assume un indirizzo di fail.

Questo indirizzo di fail è 169.254.x.y dove x.y sono gli ultimi due valori dall'indirizzo MAC.

In questo modo se si forza a DHCP tutti i dispositivi si può installare in rete anche se non c'è un server DHCP attivo.

Quando l'indirizzo di fail è stato attivato (il led relativo smette di lampeggiare), è possibile lanciare il software "Seneca Discovery Device" e forzare l'indirizzo IP che si preferisce a tutti i dispositivi.

14. IL CAVO RS232 DB9

Il CAVO DB9 CAVO RS232 può essere ottenuto da Seneca (può essere acquistato anche dal sito web di ecommerce <u>www.seneca.it</u>) per il collegamento con un dispositivo DB9 RS232.

15. PROTOCOLLI MODBUS DI COMUNICAZIONE SUPPORTATI

I protocolli di comunicazione Modbus supportati sono:

- Modbus RTU/ASCII master/slave (dalle porte seriali #1 e #2)
- Modbus TCP-IP Client (dalla porta Ethernet), massimo 10 Server Modbus TCP-IP remoti

Per ulteriori informazioni su questi protocolli, consultare il sito Web: <u>http://www.modbus.org/specs.php</u>.

15.1. CODICI FUNZIONE MODBUS SUPPORTATI

Sono supportate le seguenti funzioni Modbus:

- Read Coils (function 1)
- Read Discrete Inputs (function 2)
- Read Holding Registers (function 3)
- Read Input Registers (function 4)
- Write Single Coil (function 5)
- Write Single Register (function 6)
- Write multiple Coils (function 15)
- Write Multiple Registers (function 16)

ATTENZIONE!

Tutte le variabili a 32 bit sono contenute in 2 registri Modbus consecutivi Tutte le variabili a 64 bit sono contenute in 4 registri Modbus consecutivi

16. INFORMAZIONI SUI REGISTRI MODBUS

Nel seguente capitolo vengono usate le seguenti abbreviazioni:

MS	Most Significant
LS	Least Significant
MSBIT	Most Significant Bit
LSBIT	Least Significant Bit
MMSW	"Most" Most Significant Word (16bit)
MSW	Most Significant Word (16bit)
LSW	Least Significant Word (16bit)
LLSW	"Least" Least Significant Word (16bit)
RO	Read Only
D\\/*	Read-Write: REGISTRI CONTENUTI IN MEMORIA FLASH: SCRIVIBILI AL MASSIMO
L L L L L L L L L L L L L L L L L L L	CIRCA 10000 VOLTE
D\\/**	Read-Write: REGISTRI SCRIVIBILI SOLO DOPO LA SCRITTURA DEL COMANDO
1.1.1.1	"ENABLE WRITE CUSTOM ENERGIES=49616"
UNSIGNED 16 BIT	Registro intero senza segno che può assumere valori da 0 a 65535
SIGNED 16 BIT	Registro intero con segno che può assumere valori da -32768 a +32767
UNSIGNED 32 BIT	Registro intero senza segno che può assumere valori da 0 a 4294967296
SIGNED 32 BIT	Registro intero con segno che può assumere valori da -2147483648 a 2147483647
	Registro intero senza segno che può assumere valori da 0 a
UNSIGNED 04 DIT	18.446.744.073.709.551.615
SIGNED 64 BIT	Registro intero con segno che può assumere valori da -2^63 a 2^63-1
	Registro a virgola mobile a 32 bit, a precisione singola (IEEE 754)
FLOAT 52 DIT	https://en.wikipedia.org/wiki/IEEE_754
BIT	Registro booleano, che può assumere i valori 0 (false) o 1 (true)

16.1. NUMERAZIONE DEGLI INDIRIZZI MODBUS "O BASED" O "1 BASED"

I registri Holding Register secondo lo standard ModBUS sono indirizzabili da 0 a 65535, esistono 2 diverse convenzioni per la numerazione degli indirizzi: la "0 BASED" e la "1 BASED".

Per maggiore chiarezza Seneca riporta le proprie tabelle dei registri in entrambe le convenzioni.

ATTENZIONE!

LEGGERE ATTENTAMENTE LA DOCUMENTAZIONE DEL DISPOSITIVO MASTER MODBUS AL FINE DI CAPIRE QUALE DELLE DUE CONVENZIONI IL COSTRUTTORE HA DECISO DI UTILIZZARE. SENECA, PER I SUOI PRODOTTI, UTILIZZA LA CONVENZIONE "1 BASED"

16.2. NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "O BASED"

La numerazione è del tipo:

INDIRIZZO MODBUS HOLDING REGISTER (OFFSET)	SIGNIFICATO
0	PRIMO REGISTRO
1	SECONDO REGISTRO
2	TERZO REGISTRO
3	QUARTO REGISTRO
4	QUINTO REGISTRO

Per cui il primo registro si trova all'indirizzo 0.

Nelle tabelle che seguono questa convenzione è indicata con "OFFSET INDIRIZZO".

16.3. NUMERAZIONE DEGLI INDIRIZZI MODBUS CON CONVENZIONE "1 BASED" (STANDARD)

La numerazione è quella stabilita dal consorzio Modbus ed è del tipo:

INDIRIZZO MODBUS HOLDING REGISTER 4x	SIGNIFICATO
40001	PRIMO REGISTRO
40002	SECONDO REGISTRO
40003	TERZO REGISTRO
40004	QUARTO REGISTRO
40005	QUINTO REGISTRO

Questa convenzione può essere indicata con "**INDIRIZZO 4x**" poiché viene aggiunto un 40000 all'indirizzo in modo che il primo registro ModBUS sia 40001.

È anche possibile una ulteriore convenzione dove viene omesso il numero 4 davanti all'indirizzo del registro:

INDIRIZZO MODBUS HOLDING	SIGNIFICATO
SENZA 4x	
1	PRIMO REGISTRO
2	SECONDO REGISTRO
3	TERZO REGISTRO
4	QUARTO REGISTRO
5	QUINTO REGISTRO

16.4. CONVENZIONE DEI BIT ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER

Un registro ModBUS Holding Register è composto da 16 bit con la seguente convenzione:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Ad esempio, se il valore del registro in decimale è 12300 il valore 12300 in esadecimale vale: 0x300C

l'esadecimale 0x300C in valore binario vale: 11 0000 0000 1100

Quindi, usando la convenzione di cui sopra otteniamo:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

16.5. CONVENZIONE DEI BYTE MSB E LSB ALL'INTERNO DI UN REGISTRO MODBUS HOLDING REGISTER

Un registro ModBUS Holding Register è composto da 16 bit con la seguente convenzione:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Si definisce Byte LSB (Least Significant Byte) gli 8 bit che vanno da Bit 0 a Bit 7 compresi, si definisce Byte MSB (Most Significant Byte) gli 8 bit che vanno da Bit 8 a Bit 15 compresi:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BYTE MSB											BYTE	LSB			

16.6. RAPPRESENTAZIONE DI UN VALORE A 32 BIT IN DUE REGISTRI MODBUS HOLDING REGISTER CONSECUTIVI

La rappresentazione di un valore a 32 bit nei registri Holding Register in ModBUS è fatta utilizzando 2 registri consecutivi Holding Register (un registro Holding Register è da 16 bit). Per ottenere il valore a 32 bit è necessario leggere quindi due registri consecutivi:

Ad esempio se il registro 40064 contiene i 16 bit più significativi (MSW) mentre il registro 40065 i 16 bit meno significativi (LSW) il valore a 32 bit si ottiene componendo i 2 registri:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
40064 MOST SIGNIFICANT WORD															

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
40065 LEAST SIGNIFICANT WORD															

 $Value_{32bit} = Register_{LSW} + (Register_{MSW} * 65536)$

Nei registri di lettura è possibile scambiare il word più significativo con quello meno significativo quindi è possibile ottenere il 40064 come LSW e il 40065 come MSW.

16.7. TIPI DI DATO FLOATING POINT A 32 BIT (IEEE 754)

Lo standard IEEE 754 (<u>https://en.wikipedia.org/wiki/IEEE_754</u>) definisce il formato per la rappresentazione dei numeri in virgola mobile.

Come già detto poiché si tratta di un tipo dati a 32 bit la sua rappresentazione occupa due registri holding register da 16 bit.

Per ottenere una conversione binaria / esadecimale di un valore Floating point si può fare riferimento ad un convertitore online a questo indirizzo:

http://www.h-schmidt.net/FloatConverter/IEEE754.html

	IEEE 754 Converter (JavaScript), V0.22														
	Sign	Exponent		Mantissa											
Value:	+1	21		1.2699999809265137											
Encoded as:	0	128		2264924											
Binary:															
	You er	ntered	2.54												
	Value	actually stored in float:	2.53999996	6185302734375	+1										
	Error of	due to conversion:	-3.8146972	65625E-8											
	Binary	Representation	0100000001000101000111101011100												
	Hexad	lecimal Representation	0x40228f5c												

Utilizzando l'ultima rappresentazione il valore 2.54 è rappresentato a 32 bit come:

0x4022 8F5C

Poiché abbiamo a disposizione registri a 16 bit il valore va diviso in MSW e LSW:

0x4022 (16418 decimale) sono i 16 bit più significativi (MSW) mentre 0x8F5C (36700 decimale) sono i 16 bit meno significativi (LSW).