USER MANUAL

MULTIPROTOCOL "KEY" GATEWAYS SERIES

IEC 61850 - MODBUS RTU&TCP GATEWAYS

SENECA S.r.I. Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287 www.seneca.it

ORIGINAL INSTRUCTIONS

CAUTION

SENECA does not guarantee that all specifications and/or aspects of the product and firmware, included in them, will meet the requirements of the actual final application even if the product referred to in this documentation is in compliance with the technological state of the art.

The user assumes full responsibility and/or risk with regard to the configuration of the product to achieve the intended results in relation to the specific installation and/or end application.

SENECA may, with prior agreement, provide consultancy services for the successful completion of the final application, but under no circumstances can it be held responsible for its proper functioning.

The SENECA product is an advanced product, the operation of which is specified in the technical documentation supplied with the product itself and/or can be downloaded, if desired prior to purchase, from the <u>www.seneca.it</u> website.

SENECA has a policy of continuous development and accordingly reserves the right to make and/or introduce - without prior notice - changes and/or improvements to any product described in this documentation.

The product described in this documentation may solely and exclusively be used by personnel qualified for the specific activity and in accordance with the relevant technical documentation, with particular attention being paid to the safety instructions.

Qualified personnel means personnel who, on the basis of their training, competence and experience, are able to identify risks and avoid potential hazards that could occur during the use of this product.

SENECA products may only be used for the applications and in the manner described in the technical documentation relating to the products themselves.

To ensure proper operation and prevent the occurrence of malfunctions, the transport, storage, installation, assembly, maintenance of SENECA products must comply with the safety instructions and environmental conditions specified in this documentation.

SENECA's liability in relation to its products is governed by the general conditions of sale, which can be downloaded from <u>www.seneca.it</u>.

Neither SENECA nor its employees, within the limits of applicable law, will in any case be liable for any lost profits and/or sales, loss of data and/or information, higher costs incurred for goods and/or replacement services, damage to property and/or persons, interruption of activities and/or provision of services, any direct, indirect, incidental, pecuniary and non-pecuniary, consequential damages in any way caused and/or caused, due to negligence, carelessness, incompetence and/or other liabilities arising from the installation, use and/or inability to use the product.

CONTACT US	
Technical Support	support@seneca.it
Product information	sales@seneca.it

Document revisions

DATE	REVISION	NOTES	AUTHOR
16/09/2024	0	First revision	MM

This document is the property of SENECA srl. Copies and reproduction are prohibited unless authorised.

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

TABLE OF CONTENTS

1.	PRELIMINARY WARNINGS	6
1.1.	DESCRIPTION	6
1.2.	IEC61850 PROTOCOL	6
1.3.	FEATURES OF THE "KEY" SERIES COMMUNICATION PORTS	7
2.	DEVICE HARDWARE REVISION	7
3.	FLEX TECHNOLOGY FOR PROTOCOL CHANGE	8
3.1.	CHANGING PROTOCOLS WITH THE SENECA DISCOVERY DEVICE SOFTWARE	9
4.	ETHERNET PORT	10
5.	FIRMWARE UPDATE	10
6.	OPERATING MODE	11
6.1.	GATEWAY IEC 61850 SERVER / MODBUS MASTER	11
7.	IEC61850 IMPLEMENTATION ON THE "KEY" SERIES GATEWAYS	12
7.1.	Basic SCL structure	12
7.2.	Modbus variables	12
7.3.	DataSet	12
7.4.	Report Control Block (unbuffered/buffered) in the SCL structure	13
8.	GATEWAY CONFIGURATION	14
0.1.	GATEWAT CONFIGURATION WITH THE WEBSERVER FOR THE COPADATA IEC01050 CLIENT *** CLIENT.	14
9.	GATEWAY WEBSERVERS	20
9.1.	WEBSERVER DEI GATEWAY "-I"	20
9	.1.1. WEBSERVER MODE AND IEC61850 MODE	20
9	.1.2. MANUAL PROCEDURE FOR SWITCHING FROM IEC61850 MODE TO WEBSERVER MODE AND VICE VERS	SA20
9	.1.3. STEP BY STEP GUIDE FOR THE FIRST ACCESS TO THE WEBSERVER	21
9		
9	.1.4.1. WEBSERVER SECTIONS	23
9	.1.4.2. STATUS SECTION	24
9. Q	1.4.3. SETUP SECTION	25 20
9. Q	1432 IMPORTING A CONFIGURATION FROM A FILE	29 30
9	.1.4.4. "SETUP COMMANDS/TAGS" SECTION	
9	.1.4.5. "I/O MAPPING" SECTION	
9	.1.4.1. "SETUP IEC VARIABLES" SECTION	
9	.1.4.1. "SETUP IEC DATASET" SECTION	32
9	.1.4.2. "SETUP IEC REPORT CONTROL BLOCK" SECTION	32
0	1.4.1. "FIRMWARE UPDATE" SECTION	

9.1. 9.1. 9.1.	9.1.4.1. "CERTIFICATE SETUP" SECTION 9.1.4.2. SERIAL "SERIAL TRAFFIC MONITOR" 9.1.4.1. LOCAL TIME SETUP		
10. 10.1.	SU	IPPORTED MODBUS COMMUNICATION PROTOCOLS	33
11.	RE	ESETTING THE DEVICE TO ITS FACTORY CONFIGURATION	33

1. **PRELIMINARY WARNINGS**

ATTENTION!

This user manual extends the information from the installation manual to the configuration of the device. Use the installation manual for more information.

ATTENTION!

In any case, SENECA s.r.l. or its suppliers will not be responsible for the loss of data/revenue or consequential or incidental damages due to negligence or bad/improper management of the device, even if SENECA is well aware of these possible damages.

SENECA, its subsidiaries, affiliates, group companies, suppliers and distributors do not guarantee that the functions fully meet the customer's expectations or that the device, firmware and software should have no errors or operate continuously.

1.1. **DESCRIPTION**

The Z-KEY-I, R-KEY-LT-I, Z-KEY-2ETH-I products allow to convert data coming from the Modbus serial bus or Modbus TCP-IP Ethernet into the IEC61850 protocol or vice versa.

1.2. IEC61850 PROTOCOL

IEC 61850 is a standard for the design of automation systems for electrical substations. It is part of the International Electrotechnical Commission.

The data model defined in IEC 61850 is supported, for example, by the MMS protocol.

PROTOCOL					
Type of protocol	IEC 61850 server				
	MMS (manufacture message specification) protocol supported				
	Report Control Block buffered/unbuffered supported				
	Encrypted connection with certificates supported				
	Goose and SMV protocols not supported				
	TLS 1.2 connection, X.509 certificate management				
	·				
MEMORY					

Memory size of variables	512 bytes max in reading and 512 bytes max in writing	

1.3. FEATURES OF THE "KEY" SERIES COMMUNICATION PORTS

PRODUCT	ETHERNET PORTS	RS232/RS485 SERIAL PORT # 1 CONFIGURABLE	RS485 SERIAL PORT # 2	ISOLATED SERIAL PORTS	
Z-KEY-I	1	1	1	Yes, both ports	
R-KEY-LT-I	1	1	NO	NO	
Z-KEY-2ETH-I	2	1	1	Yes, both ports	

2. DEVICE HARDWARE REVISION

With a view to continuous improvement, Seneca updates and makes the hardware of its devices increasingly more sophisticated. It is possible to know the hardware revision of a product via the label on the side of the device.

An example of an R-KEY-LT product label is the following:

The label also shows the firmware revision present in the device (in this case 2.0.1.0) at the time of sale. To improve performance or extend functionality, Seneca recommends updating the firmware to the latest available version (see the section dedicated to the product on www.seneca.it).

3. FLEX TECHNOLOGY FOR PROTOCOL CHANGE

Starting from the hardware revision indicated in the following table, the KEY series devices include Flex technology.

GATEWAY	FLEX TECHNOLOGY SUPPORTED BY HARDWARE REVISION
Z-KEY	"G00"
R-KEY-LT	"E00"
Z-KEY-2ETH	"C00"

Flex allows you to change the combination of industrial communication protocols supported by the gateways at will from a list of available ones, the development is continuously updated, for a complete list refer to the page: https://www.seneca.it/flex/

Some examples of supported protocols are:

SENECA®

The gateway then becomes "universal" and compatible with Siemens or Rockwell or Schneider systems etc. without the need to purchase different hardware.

3.1. CHANGING PROTOCOLS WITH THE SENECA DISCOVERY DEVICE SOFTWARE

From revision 2.8 the Seneca Discovery Device software identifies the devices that support the "Flex" technology:

erca				
Nome	FLEX	Indirizzo	Mac	Versione
I-KEY-LT-0		192.168.90.102	C8:F9:81:0E:4F:C6	2011.206
	Nessun device sel	ezionato		

For example, in the case in the figure it is possible to press the "Change Protocol" button and select the destination protocol from those in the list:

😸 Ci	ambia protocollo		×
Proto	collo di destinazione	(-0) MODBUS SERIAL SERVER <-> MODBUS RTU/ASCII/TCP	~
		(-0) MODBUS SERIAL SERVER <-> MODBUS RTU/ASCII/TCP	
File	C:\Users\vianello.SEN	(-P) PROFINET IO <-> MODBUS RTU/ASCII/TCP	- 1
		(-E) ETHERNET/IP <-> MODBUS RTU/ASCII/TCP	
Z	KEY / Z-KEY-2ETH DIP1 SW1 ON DIP2 SW1 ON	R-KEY-LT 	
Pront	0		
		Seleziona Avvia	

At the end of the operation, bring (only at the first power-on) the dip switches 1 and 2 to "ON" to force the device to default (see also the chapter "RESETTING THE DEVICE TO ITS FACTORY CONFIGURATION").

Always refer to the user manual of the communication protocol installed in the device by downloading it from the Seneca website.

4. ETHERNET PORT

The factory configuration of the Ethernet port is:

STATIC IP: 192.168.90.101 SUBNET MASK: 255.255.255.0 GATEWAY: 192.168.90.1

Multiple devices must not be inserted on the same network with the same static IP.

ATTENTION! DO NOT CONNECT 2 OR MORE FACTORY-CONFIGURED DEVICES ON THE SAME ETHERNET NETWORK, OR THE DEVICE WILL NOT WORK (192.168.90.101 IP ADDRESS CONFLICT)

5. **FIRMWARE UPDATE**

In order to improve, add or optimize the functions of the product, Seneca releases firmware updates on the device section on the <u>www.seneca.it</u> website

The firmware update is performed using Seneca tools or the webserver.

ATTENTION! NOT TO DAMAGE THE DEVICE DO NOT REMOVE THE POWER SUPPLY DURING THE FIRMWARE UPDATE OPERATION.

6. **OPERATING MODE**

The Gateway allows you to operate in the following mode: GATEWAY IEC 61850 SERVER / MODBUS RTU/TCP MASTER

6.1. GATEWAY IEC 61850 SERVER / MODBUS MASTER

This operating mode allows to connect an IEC 61850 SCADA client with Modbus RTU/ASCII Slave and/or remote TCP Server I/O devices

The Gateway, on the field side, works as a Modbus master / Modbus Client device and on the other side as an IEC 61850 server via Ethernet.

The Modbus requests (read or write commands) are configured in the gateway device and an ICD file is automatically generated according to the SCL standard.

Once this file is imported into the SCADA (it is also possible to search for the node) all the configured IO will be accessible without any other configuration.

In addition to the serial devices, it is also possible to connect up to 3 remote Modbus TCP-IP servers.

7. IEC61850 IMPLEMENTATION ON THE "KEY" SERIES GATEWAYS

Given the complexity of the IEC61850 protocol, the "KEY" series gateways implement an IEC61850 server with some simplified features that we list:

7.1 Basic SCL structure

The basic SCL structure is constant and is represented by 3 logical nodes:

GGIO1 represents the logical Node Generic IO 1, here all the variables coming from the Modbus buses will be present.

LLN0 represents the logical node zero. Contains the data relating to the Intelligent Electronic Device (IED family KEY)

LPHD1 represents the physical logic node 1. Contains information relating to the physical device.

7.2. Modbus variables

When variables are added (reads/writes from the Modbus protocol) these will always be added to the logic node GGIO1. For example, for the "VAR1" variable we have:

7.3. DataSet

For the Report Data Blocks it is necessary to define one or more sets of variables, this is done through the definition of the datasets.

7.4. Report Control Block (unbuffered/buffered) in the SCL structure

The IEC 61850 standard defines a reporting mechanism that uses spontaneous data transmission. This aims to minimize the network load. The generation and transmission of the report are controlled by the report control blocks. A report control block is defined by its attributes, such as the assigned dataset, trigger options and optional fields. The dataset is sent directly from the server to the client in case the configured event has occurred. The KEY series gateways support both buffered and unbuffered RCBs.

In unbuffered RCBs the data is transmitted as defined by the chosen trigger options. In case of a connection loss the data is not stored. Transmission resumes once the connection is re-established but information that may have been transmitted during the connection loss will be lost.

In buffered RCBs, however, in the event of a connection interruption, the data is stored in a circular buffer. As soon as the connection is re-established, the buffered information is transmitted in chronological order.

IEC61850 Client 🖲 🏯 📄 🔣 🛁 Iten Value Quality Access Ri 102:102:108.90 Text Connected (stack v10509) ▲ LD zr-key-modeldevice1 🦼 🚺 GGIO1 Þ 🛄 DS 🛄 RCB GOOD 🚺 RptID (RP) 'zr-key-modeldevice1/GGI01\$RP\$RCB VisString129 Read Only 🚺 RptEna (RP) FALSE GOOD BOOL Read Only 📕 Resv (RP) FALSE GOOD BOOL Read Only DatSet [RP] 'zr-key-modeldevice1/GGI01\$DATAS. GOOD VisString129 Read Only GOOD 🚺 ConfRev (RP1 UI4 Read Only 1 32895 GOOD UI4 🚺 OptFlds (RP) Read Only UI4 BufTm [RP] GOOD Read Only 1 SqNum [RP] 0 GOOD UI1 Read Only 124 UI4 🚺 TrgOps (RP) GOOD Read Only 🚺 IntgPd (RP) GOOD 1114 Read Only 🚺 GI (RP) EAL SE GOOD BOOL Read Only 🔲 Beh Þ VAR1 LN LLNO LN LPHD1

When Report Data Blocks are defined, they will always appear under the logical node GGIO1:

8. GATEWAY CONFIGURATION

8.1. GATEWAY CONFIGURATION WITH THE WEBSERVER FOR THE "COPADATA IEC61850 CLIENT™" CLIENT

The COPADATA "IEC61850 Client" software will be used as IEC 61850 client for Windows. For more information on the client software, refer to:

https://www.copadata.com

The purpose is to configure the gateway so that it can read a register coming from the serial modbus RTU protocol from a 61850 client.

We configure the Gateway via the webserver, first we activate the webserver (by default the device is in IEC61850 mode), we hold down the side button until the device restarts.

At this point the PWR LED starts to flash to indicate the operating mode as a webserver for the configuration. The default address of the webserver is:

http://192.168.90.101

user: admin password: admin

First, let's configure the Ethernet and serial parameters:

Z-KEY-I Setup Firmware Version : 2	014_101	
Scegli file Nessun file selezionato	d conf file	
Save conf file		
	CURRENT	UPDATED
STATIC IP	192.168.90.101	192.168.90.101
STATIC IP MASK	265.265.265.0	255.255.255.0
STATIC GATEWAY	192.168.90.1	192.168.90.1
ТСР/ІР РОВТ	602	502
TCP/IP TIMEOUT [ms]	612	512
PORT#1 MODBUS PROTOCOL	RTU	RTU 🗸
PORT#2 MODBUS PROTOCOL	RTU	RTU 🗸
PORT#1 BAUDRATE	38400	38400 🗸
PORT#1 DATA BITS	8	8 🗸
PORT#1 PARITY	None	None 🗸
PORT#1 STOP BITS	1	1 •
PORT#1 TIMEOUT [ms]	600	500
PORT#1 WRITING RETRIES	3	3
PORT#2 BAUDRATE	38400	38400 🗸
PORT#2 DATA BITS	8	8 🗸
PORT#2 PARITY	None	None 🗸
PORT#2 STOP BITS	1	1 🗸
PORT#2 TIMEOUT [ms]	600	500
PORT#2 WRITING RETRIES	3	3
WEB SERVER PORT	80	80
WEB SERVER AUTHENTICATION USER NAME	admin	admin
WEB SERVER AUTHENTICATION USER PASSWORD	admin	admin
IP CHANGE FROM DISCOVERY	Enabled	Enabled V
TLS	Disabled	Disabled V
MODBUS TCP-IP CLIENT	DISABLED	DISABLED 🗸
STOP MODBUS READING WHEN NO IEC61850 CONNECTION	Disabled	Disabled V
SYNC CLOCK WITH TIME INTERNET	DISABLED	DISABLED 🗸

Now let's create the Modbus master requests (commands). Let's enter the Setup Modbus Command page:

Z-KEY-I	Setup Con	nmands/	Fage I	Firmware V	ersion : 2	2014_101		
Scegli file	Scegli file Nessun file selezionato Load Cfg File							
Save to fi	le current co	nfiguration						
ADD	MOD	IFY	DELETE	N	IOVE UP	Ν	IOVE DO	WN
	Page : 1/10 PREVIOUS PAGE NEXT PAGE							
MODBUS COMMAND INDEX	MNEMONIC NAME	TARGET MODBUS DEVICE	TARGET RESOURCE	TARGET MODBUS COMMAND	TARGET MODBUS STATION ADDRESS	TARGET MODBUS START REGISTER	TARGET MODBUS DATA LENGTH	TARGET CONNECTE TO

Let's read 2 holding registers 40001 and 40002 (offset 0 and 1) from the device with station address 1, press the "ADD" button:

Z-KEY-I Setup Comma	nd 1 Fir	mware Version : 2014_101	
	CURRENT	UPDATED	
MNEMONIC NAME		TAG1	
TARGET MODBUS DEVICE		CUSTOM V	
TARGET RESOURCE		•	
TARGET CONNECTED TO		PORT#1 V	
TARGET MODBUS STATION ADDRESS		1	
TARGET MODBUS START REGISTER ADDRESS		1	Equivalent to the address in the Seneca documentation : 40001
TARGET MODBUS REQUEST TYPE		READ HOLDING REGISTER]
TARGET REGISTER DATA LENGTH		2	
TARGET MODBUS PERIODIC TRIGGER (ms)	1000	1000	
ENDIAN SWAP		NONE 🗸	
	APPLY		

Confirm with "APPLY">

Now the command will appear in the command list:

Z-KEY-I Setup Commands/Tags Firmware Version : 2014_101								
Scegli file	Scegli file Nessun file selezionato Load Cfg File							
Save to f	Save to file current configuration							
ADD	ADD MODIFY DELETE MOVE UP MOVE DOWN							
	Page: 1/10 PREVIOUS PAGE NEXT PAGE							
MODBUS COMMANI INDEX		TARGET MODBUS DEVICE	TARGET RESOURCE	TARGET MODBUS COMMAND	TARGET MODBUS STATION ADDRESS	TARGET MODBUS START REGISTER	TARGET MODBUS DATA LENGTH	TARGET CONNECTE TO
1	TAG1	CUSTOM		READ HOLDING BEGISTER	1	40001	2	PORT#1

Now the read bytes are updated in the internal memory of the gateway, let's go to the I/O Mapping page:

Z-KEY-I	Z-KEY-I Status Firmware Version : 2014_101						
APPLY DATA FLOW DIRECTION IEC61850 READ V AUTOMATIC MAPPING							
		с	INTERNAL ADI	DRESS	QUANTITY		
	TAG1		0	1	4		

At this point we define an IEC variable associated with the 2 bytes acquired from Modbus:

We confirm with APPLY:

SENECA®	Z-KEY-I Setup IEC61850 Variables Firmware Version : 2014_101									
Status	Scegli file	Scegli file Nessun file selezionato Load Cfg File								
Setup										
Setup Modbus Commands/Tags	Save to file	e current configura	ation							
I/O Mapping	ADD	MODIFY	DELETE	MOVE	UP	NOVE DO	WN			
Setup IEC Variables										
Setup IEC Dataset		Page : 1/10 PREVIOUS PAGE NEXT PAGE								
Setup IEC Report Control Block										
Firmware Update	IEC VARIABLE		READ/WRITE	DATA TYPE	BYTE OFFSET	BIT	SCALE FACTOR			
Certificate Setup	INDEX									
Serial Traffic Monitor	1	VAR_IEC	READ	INT16 TO INT32	0	-	-			
Local Time Setup										

If we go to the "Status" section we will find the first 2 bytes in memory with the value read from Modbus (0x0A, 0x05):

Now we press the "Start IEC" button, at this point the device restarts in IEC61850 mode (the webserver is now disabled), the operation could also be obtained by holding down the side button.

Now in the IEC61850 client we activate the connection:

And we can view the value coming from Modbus:

IEC61850 Client						-		×
9 Ֆ 🖿 🔣 →								
Item	Value	Status	Quality	Format	Access Ri Time			
▲ 112 2×KEV4 (192:168:30:10:102) ▲ 102 2×Kev+modeldericel ▲ 105 66:01 ● 105 Beh ▲ ■ VAP_IEC	Connected (stack v10509)							
🚺 stVal [ST]	2565		GOOD	14	Read Only			
🚺 a [ST]	GOOD		GOOD	UI4	Read Only			
▶ 10 LINO ▶ 10 LINO ▶ 10 LPHOT	1970.01.02.00.03.13.0		G00D	R	Read Orly			
Plain TCP socket has been set up. Connected to: X:EV1 (1921 168 90.101:102) Open Session to 192:168 90.101 Session 4118956188 is online								
								Ţ
Ready							NUM	

9. GATEWAY WEBSERVERS

9.1. WEBSERVER DEI GATEWAY "-I"

9.1.1. WEBSERVER MODE AND IEC61850 MODE

The device is normally in Webserver mode.

To access the internal webserver, you must put the device in Webserver mode by pressing the button following the procedure:

9.1.2. MANUAL PROCEDURE FOR SWITCHING FROM IEC61850 MODE TO WEBSERVER MODE AND VICE VERSA

To force webserver mode:

- 1) Turn on the device
- 2) Keep the PS1 button pressed until all LEDs turn off
- 3) Release the button
- 4) The device restarts and the LEDs On Z-KEY-I: PWR and SD/COM On Z-KEY-2ETH-I: PWR and COM On R-KEY-LT-I: PWR and COM flash slowly to show webserver mode

To force IEC61850 mode:

- 1) Turn on the device
- 2) Keep the PS1 button pressed until all LEDs turn off
- 3) Release the button
- 4) The device restarts and the LEDs On Z-KEY-I: PWR and SD/COM On Z-KEY-2ETH-I: PWR and COM On R-KEY-LT-I: PWR and COM end flashing slowly to show IEC61850 mode.

9.1.3. STEP BY STEP GUIDE FOR THE FIRST ACCESS TO THE WEBSERVER

STEP 1: POWER THE DEVICE AND CONNECT THE ETHERNET PORT, PUT THE DEVICE IN WEBSERVER MODE

SENECA DISCOVERY DEVICE SOFTWARE STEP 2

If you need to change the IP address of the device (default 192.168.90.101), launch the Seneca Discovery Device software and perform the SCAN, select the device and press the "Assign IP" button, set a configuration compatible with your PC, for example:

😸 AssignIP		×
DHCP		
IP		
192.168.1.101		
Netmask		
255.255.255.0		
Gateway		
192.168.1.1		
	ОК	Stop

Confirm with OK. Now the device can be reached via Ethernet from your PC.

STEP 3 ACCESS TO THE CONFIGURATION WEBSERVER

ENTER your access credentials: user: admin password: admin

ATTENTION!

THE WEB BROWSERS WHICH HAVE BEEN TESTED FOR COMPATIBILITY WITH THE DEVICE WEBSERVER ARE: MOZILLA FIREFOX AND GOOGLE CHROME. THEREFORE, THE OPERATION WITH OTHER BROWSERS IS NOT GUARANTEED

9.1.4. WEBSERVER DEVICE CONFIGURATION

For further information on the access to the webserver of a new device, please refer to chapter 9.1.3.

ATTENTION!

THE WEB BROWSERS WHICH HAVE BEEN TESTED FOR COMPATIBILITY WITH THE DEVICE WEBSERVER ARE:

MOZILLA FIREFOX AND GOOGLE CHROME.

THEREFORE, THE OPERATION WITH OTHER BROWSERS IS NOT GUARANTEED

ATTENTION!

AFTER THE FIRST ACCESS CHANGE USER NAME AND PASSWORD IN ORDER TO PREVENT ACCESS TO THE DEVICE TO UNAUTHORIZED PEOPLE.

ATTENTION!

IF THE PARAMETERS TO ACCESS THE WEBSERVER HAVE BEEN LOST, TO ACCESS IT, IT IS NECESSARY TO GO THROUGH THE PROCEDURE TO RESET THE FACTORY-SET CONFIGURATION

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

Page 22

9.1.4.1. WEBSERVER SECTIONS

The Webserver is divided into pages (sections) representing the various gateway functions:

Status

It is the section that displays the values of Modbus requests in real time.

Setup

This is the section that allows the basic configuration of the device, it also allows you to export or import a configuration.

Setup Modbus Commands / Tags

It is the section that allows you to add/modify the Modbus commands of the Modbus devices connected to the gateway.

I/O Mapping

This is the section that allows you to remap the bytes relating to the data coming from the Modbus protocol.

Setup IEC Variables

This is the section that allows you to create IEC variables starting from the acquisitions of Modbus commands.

Setup IEC Dataset

This is the section that allows you to create datasets to be used in Report Control Blocks.

Setup IEC Report Control Block

This is the section that allows you to create Report Control Blocks.

Firmware Update

This is the section that allows you to update the device firmware.

Certificate Setup

This is the section that allows you to manage X509 certificates

Serial Traffic Monitor

It allows to analyse the ModBUS frames of the serials.

Local Time Setup

This allows you to set the device date/time

9.1.4.2. "STATUS" SECTION

The Status section displays the status of the values acquired from modbus in the memory:

DATA FLOW START ADD LENGTH 25 FORMAT HI	I DIRE RESS 6 🗸 🖌		N IEC	6185	0 REA	AD 🗸										
ADDRESS	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
10	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
20	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
30	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
40	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
50	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
60	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
70	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
80	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
90	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
AO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
BO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
CO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
Do	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
FO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

There are two types of memories: that of the read-only variables and that of the write-only variables.

GET ICD FILE allows you to export the configuration to be imported into an IEC61850 client that supports the ICD format.

9.1.4.3. "SETUP" SECTION

DHCP (ETH) (default: Disabled)

Sets the DHCP client to get an IP address automatically.

STATIC IP (default: 192.168.90.101)

Sets the device static address. Careful not to enter devices with the same IP address into the same network.

STATIC IP MASK (default: 255.255.255.0)

Sets the mask for the IP network.

STATIC GATEWAY (default: 192.168.90.1)

Sets the gateway address.

TCP-IP PORT (default: 502)

Sets the communication port for the Modbus TCP-IP client protocol.

TCP-IP TIMEOUT [ms] (default 512 ms)

Sets the waiting time for a request to be considered in timeout.

PORT #1 MODBUS PROTOCOL (default RTU)

Sets the protocol on the serial between Modbus RTU or Modbus ASCII

PORT #2 MODBUS PROTOCOL (default RTU)

Sets the protocol on the serial between Modbus RTU or Modbus ASCII

PORT #1 BAUDRATE (default: 38400 baud)

Selects the communication speed of the COM #1 serial port

PORT #1 DATA BITS (default: 38400 baud)

Selects the communication speed of the COM #1 serial port

PORT #1 PARITY (default: None)

Sets the parity for the COM #1 serial communication port.

PORT #1 STOP BIT (default: 1)

Sets the number of stop bits for the COM #1 serial communication port.

PORT #1 TIMEOUT [ms]

Sets the wait time before defining fail.

PORT #1 WRITING RETRIES (default: 3)

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

www.seneca.it

Selects the number of writing attempts to be made on a serial slave before returning an error.

PORT #1 MAX READ NUM

Sets the maximum number of simultaneous serial reading ModBUS registers, the firmware will use this value to optimize the ModBUS readings.

PORT #1 MAX WRITE NUM

Sets the maximum number of simultaneous writing ModBUS registers of the serial, the firmware will use this value to optimize the ModBUS writings.

PORT #2 BAUDRATE (default: 38400 baud) (only for Z-KEY-I and Z-KEY-2ETH-I)

Selects the communication speed of the COM #2 serial port

PORT #2 DATA BITS (default: 38400 baud) (only for Z-KEY-I and Z-KEY-2ETH-I)

Selects the communication speed of the COM #2 serial port

PORT #2 PARITY (default: None) (only for Z-KEY-I and Z-KEY-2ETH-I)

Sets the parity for the COM #2 serial communication port.

PORT #2 STOP BIT (default: 1) (only for Z-KEY-I and Z-KEY-2ETH-I)

Sets the number of stop bits for the COM #2 serial communication port.

PORT# 2 TIMEOUT [ms] (only for Z-KEY-I and Z-KEY-2ETH-I)

Sets the wait time before defining fail.

PORT #2 WRITING RETRIES (default: 3) (only for Z-KEY-I and Z-KEY-2ETH-I)

Selects the number of writing attempts to be made on a serial slave before returning an error.

PORT #2 MAX READ NUM (only for Z-KEY-I and Z-KEY-2ETH-I)

Sets the maximum number of simultaneous reading ModBUS registers of the remote TCP-IP Modbus server, the firmware will use this value to optimize the ModBUS readings.

PORT #2 MAX WRITE NUM (only for Z-KEY-I and Z-KEY-2ETH-I)

Sets the maximum number of simultaneous writing ModBUS registers of the serial, the firmware will use this value to optimize the ModBUS writings.

WEB SERVER AUTHENTICATION USER NAME (default: admin)

Sets the username to access the webserver.

WEB SERVER PASSWORD (default: admin)

Sets the password to access the webserver and to read/write the configuration (if enabled).

WEB SERVER PORT (default: 80)

Sets the communication port for the web server.

IP CHANGE FROM DISCOVERY (default: Enabled)

Selects whether or not the device accepts the IP address change from the Seneca Discovery Device software.

TLS (default: Disabled)

Enables or disables cryptographic protocols via TLS.

MODBUS TCP-IP CLIENT

Enables or not the TCP-IP client Modbus

MODBUS TCP-IP SERVER#1...3 PORT

Sets the port for the max 3 remote TCP-IP Modbus servers

MODBUS TCP-IP SERVER#1...3 ADDRESS

Sets the IP address for the max 3 remote TCP-IP Modbus servers

MODBUS TCP-IP CLIENT TIMEOUT [ms]

Sets the timeout for remote TCP-IP Modbus servers

MODBUS TCP-IP CLIENT WRITING ATTEMPTS

Selects the number of writing attempts to be made on a remote TCP-IP Modbus server before returning an error and activating the quarantine.

MODBUS TCP-IP CLIENT MAX READ NUM

Sets the maximum number of simultaneous reading ModBUS registers of the remote TCP-IP Modbus server, the firmware will use this value to optimize the ModBUS readings.

MODBUS TCP-IP CLIENT MAX WRITE NUM

Sets the maximum number of simultaneous writing ModBUS registers of the remote TCP-IP Modbus server, the firmware will use this value to optimize the ModBUS writings.

SERVER AFTER FAIL DELAY

Sets the number of quarantine seconds after a tag has been declared in fail (i.e. these tags are no longer considered) before being interrogated again.

STOP MODBUS READING WHEN NO IEC61850 CONNECTION

If active, it allows to stop the modbus communication when the communication with the IEC61850 client is lost. This allows to trigger any timeouts present in the modbus slave/server devices.

SYNC CLOCK WITH TIME INTERNET

Allows you to enable date/time updating via connection to NTP servers (RFC 5905).

AT EACH RESTART THE DEVICE MUST BE ABLE TO RETRIEVE THE DATE/TIME FROM AN NTP SERVER OTHERWISE THIS WILL BE SET TO 1/1/1970 0:00

NTP SERVER 1 ADDRESS

This is the IP address of the first NTP server (for example 193.204.114.232 for INRIM's NTP)

NTP SERVER 2 ADDRESS

This is the IP address of the second NTP server (in case the first one does not respond)

GMT

Sets the offset from Greenwich Mean Time (for example for Italy GMT=+1 when daylight saving time is not in effect)

IEC MODEL NAME

Sets the model name for the IEC protocol

IEC DEVICE NAME

Sets the device name for the IEC protocol

IEC61850 SERVER TCP/IP PORT

Sets the TCP-IP communication port of the IEC61850 protocol

In addition, a configuration can be exported / imported via the webserver.

9.1.4.3.1. SAVING A CONFIGURATION ON A FILE

A configuration that includes:

CONFIGURATION TAGS/COMMANDS

It can be saved to a file this way:

Go to the Setup section and select the file to save, press the "Save config" button

Scegli file	Nessun file selezionato	Load conf file
Save conf	file	

9.1.4.3.2. IMPORTING A CONFIGURATION FROM A FILE

A configuration that includes:

CONFIGURATION TAGS/COMMANDS

It can be imported from a file this way:

Go to the Setup section and select the file to load, press the "Load config" button

Scegli file	Nessun file selezionato	Load conf file
Save conf	file	

9.1.4.4. "SETUP COMMANDS/TAGS" SECTION

In this section you can add, edit or delete a Modbus command.

Using the ADD button you can add a new command. Using the MODIFY button it is possible to modify an existing command. Using the DEL button it is possible to delete an existing command.

MNEMONIC NAME

It is the identifying name of the command

TARGET MODBUS DEVICE

It represents the Seneca Modbus device selected from those available in the database. In the case of a non-Seneca device or for advanced configurations, select CUSTOM.

TARGET RESOURCE

It represents the Seneca device variable you want to add.

TARGET CONNECTED TO

It selects the serial to be used for Modbus serial communication for the specified TAG.

TARGET MODBUS STATION ADDRESS

It selects the station address to use for the command.

TARGET MODBUS START REGISTER

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

It represents the starting Modbus address of the command (in the case of a Seneca device it is filled in automatically).

TARGET MODBUS REQUEST TYPE

It represents the type of Modbus command to use (Read Holding Register, Coil etc.). In the case of a Seneca device it is filled in automatically.

TARGET REGISTER DATA LENGTH

Allows you to set how many Modbus registers are required in the command.

TARGET MODBUS WRITE PERIODIC TRIGGER [ms]

Represents the time interval of execution of the command

ENDIAN SWAP

Allows you to swap a register read by Modbus, i.e.: NONE: no swap BYTE: shifts the high byte with low byte (for example Modbus reading 0xAABB will be converted to 0xBBAA) WORD: In the case of a data type greater than a Modbus register (e.g. single precision Floating Point registers) it allows you to set which word (register) to use as the most significant part, for example: Register 1 = 0xAABB Register 2 = 0xCCDD will become a single value 0xAABBCCDD if the parameter is NONE, otherwise 0xCCDDAABB if this parameter is active BYTE AND WORD: as in the previous case but there will also be a byte swap, for example: Register 1 = 0xAABB Register 2 = 0xCCDD Will become 0xDDCCBBAA

9.1.4.5. "I/O MAPPING" SECTION

Allows you to move the contents of the bytes of the read and write buffers.

9.1.4.1. "SETUP IEC VARIABLES" SECTION

Allows you to define an IEC variable from the read or write buffer

MNEMONIC NAME

This is the name of the variable that will appear in the IEC61850 client

READ/WRITE

Selects whether the variable should be created from the read or write buffer

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

DATA TYPE

Represents the data type of the variable, the device can also convert the data type on the IEC61850 protocol: BIT -> 1 bit buffer size INT16 TO INT32 -> 2 byte buffer size (converted to 4 bytes in the IEC61850 protocol) UINT16 TO INT32 -> 2 byte buffer size (converted to 4 bytes in the IEC61850 protocol) INT32 -> 4 byte buffer size INT16 TO FLOAT32 -> 2 byte buffer size (converted to 4 bytes in the IEC61850 protocol) UINT16 TO FLOAT32 -> 2 byte buffer size (converted to 4 bytes in the IEC61850 protocol) UINT16 TO FLOAT32 -> 2 byte buffer size (converted to 4 bytes in the IEC61850 protocol) UINT16 TO FLOAT32 -> 2 byte buffer size (converted to 4 bytes in the IEC61850 protocol) UINT16 TO FLOAT32 -> 2 byte buffer size (converted to 4 bytes in the IEC61850 protocol) INT32 TO FLOAT32 -> 4 byte buffer size FLOAT 32 -> 4 byte buffer size

BYTE OFFSET

Represents the starting byte of the read or write buffer variable. The amount of bytes to use is defined by the data type

SCALE FACTOR

It is the floating point coefficient that multiplies the Modbus value (for example, if you set 0.1, the Modbus reading of 10 will be converted to 1 on IEC61850).

9.1.4.1. "SETUP IEC DATASET" SECTION

Allows you to set datasets by selecting the variables to enter.

9.1.4.2. "SETUP IEC REPORT CONTROL BLOCK" SECTION

Allows you to set the configuration of the Report Control Blocks.

9.1.4.1. "FIRMWARE UPDATE" SECTION

In order to improve, add, optimize the functions of the product, Seneca releases firmware updates on the device section on the <u>www.seneca.it</u> website

NOT TO DAMAGE THE DEVICE DO NOT REMOVE THE POWER SUPPLY DURING THE FIRMWARE UPDATE OPERATION.

9.1.4.1. "CERTIFICATE SETUP" SECTION

This section allows you to send or delete a certificate and/or the private key of the device. Up to 5 certificates are supported for clients. The used format is PEM.

9.1.4.2. SERIAL "SERIAL TRAFFIC MONITOR"

Allows you to view the serial packets that are in transit.

9.1.4.1. LOCAL TIME SETUP

This allows you to set the date/time manually.

ATTENTION!

IF AN NTP SERVER IS NOT SET, THE DEVICE WILL HAVE THE DATE/TIME 1/1/1970 0:00 WHEN IT RESTARTS

10. SUPPORTED MODBUS COMMUNICATION PROTOCOLS

The Modbus communication protocols supported are:

- Modbus RTU/ASCII master (from #1 and #2 serial ports)
- Modbus RTU/ASCII slave (from #1 and #2 serial ports)
- Modbus TCP-IP Client (from the Ethernet port) up to 3 remote TCP-IP Modbus Servers

For more information on these protocols, see the website: <u>http://www.modbus.org/specs.php</u>.

10.1. SUPPORTED MODBUS FUNCTION CODES

The following Modbus functions are supported:

- Read Coils (function 1)
- Read Discrete Inputs (function 2)
- Read Holding Registers (function 3)
- Read Input Registers (function 4)
- Write Single Coil (function 5)
- Write Single Register (function 6)
- Write multiple Coils (function 15)
- Write Multiple Registers (function 16)

ATTENTION!

All 32-bit variables are contained in 2 consecutive Modbus registers All 64-bit variables are contained in 4 consecutive Modbus registers

11. RESETTING THE DEVICE TO ITS FACTORY CONFIGURATION

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED WITHOUT PRIOR PERMISSION.

The factory configuration resets all parameters to default.

To reset the device to the factory configuration it is necessary to follow the procedure below:

Z-KEY-I / Z-KEY-2ETH-I:

- 1) Remove power from the device
- 2) Turn dip switches 1 and 2 to ON
- 3) Power up the device and wait at least 10 seconds
- 4) Remove power from the device
- 5) Turn dip switches 1 and 2 to OFF
- 6) At the next restart the device will have loaded the factory configuration

R-KEY-LT-I:

- 1) Remove power from the device
- 2) Set dip switches 1 and 2 of SW2 to ON
- 3) Power up the device and wait at least 10 seconds
- 4) Remove power from the device
- 5) Turn 2 SW2 dip switches to OFF.
- 6) At the next restart the device will have loaded the factory configuration