USER MANUAL

Z-4RTD2-SI

CONVERTER FOR THERMISTORS WITH 4 CHANNELS AND 24BIT ADC

SENECA S.r.I. Via Austria 26 – 35127 – Z.I. - PADOVA (PD) - ITALY Tel. +39.049.8705355 – 8705355 Fax +39 049.8706287 www.seneca.it

ORIGINAL INSTRUCTIONS

CAUTION

SENECA does not guarantee that all specifications and/or aspects of the product and firmware, included in them, will meet the requirements of the actual final application even if the product referred to in this documentation is in compliance with the technological state of the art.

The user assumes full responsibility and/or risk with regard to the configuration of the product to achieve the intended results in relation to the specific installation and/or end application.

SENECA may, with prior agreement, provide consultancy services for the successful completion of the final application, but under no circumstances can it be held responsible for its proper functioning.

The SENECA product is an advanced product, the operation of which is specified in the technical documentation supplied with the product itself and/or can be downloaded, if desired prior to purchase, from the <u>www.seneca.it</u> website.

SENECA has a policy of continuous development and accordingly reserves the right to make and/or introduce - without prior notice - changes and/or improvements to any product described in this documentation.

The product described in this documentation may solely and exclusively be used by personnel qualified for the specific activity and in accordance with the relevant technical documentation, with particular attention being paid to the safety instructions.

Qualified personnel means personnel who, on the basis of their training, competence and experience, are able to identify risks and avoid potential hazards that could occur during the use of this product.

SENECA products may only be used for the applications and in the manner described in the technical documentation relating to the products themselves.

To ensure proper operation and prevent the occurrence of malfunctions, the transport, storage, installation, assembly, maintenance of SENECA products must comply with the safety instructions and environmental conditions specified in this documentation.

SENECA's liability in relation to its products is governed by the general conditions of sale, which can be downloaded from <u>www.seneca.it</u>.

Neither SENECA nor its employees, within the limits of applicable law, will in any case be liable for any lost profits and/or sales, loss of data and/or information, higher costs incurred for goods and/or replacement services, damage to property and/or persons, interruption of activities and/or provision of services, any direct, indirect, incidental, pecuniary and non-pecuniary, consequential damages in any way caused and/or caused, due to negligence, carelessness, incompetence and/or other liabilities arising from the installation, use and/or inability to use the product.

CONTACT US		
Technical support	support@seneca.it	
Product information	sales@seneca.it	

This document is the property of SENECA srl. Copies and reproduction are prohibited unless authorised

Document revisions

DATE	REVISION	NOTES	AUTHOR
22/06/2022	0	First revision	ММ
10/10/2022	1	Added sampling rate changes for fw 1010 revision. Added info on float swapped registers Corrected errors in the Modbus register list	ММ
05/05/2023	2	Added information on USB port Added information on Hardware revisions Added firmware update mode for HW revisions different from A one	ММ
19/02/2025	3	Command 40048 register fix Various fix on modbus registers Removed preliminary warnings	MM / AZ

TABLE OF CONTENTS

1.	DESCRIPTION6
1.1.	DESCRIPTION6
1.2.	COMMUNICATION PORT SPECIFICATIONS
2.	TYPE OF SUPPORTED SENSORS7
3.	RESPONSE MEASURES AND TIMES8
3.1.	SAMPLING TIMES AND MEASUREMENT UPDATE TIME8
3.2.	FILTER8
3.3.	MODBUS RESPONSE TIME8
4.	DEVICE CONFIGURATION9
5.	USB CONNECTION AND CONFIGURATION RESET9
6.	FIRMWARE UPDATE10
6.1.	HARDWARE REVISION10
6.2.	Z-4RTD2-SI HARDWARE REVISION "A" MODEL10
6.3. FOLL	Z-4RTD2-SI HW REVISION "B" MODEL REVISION "B" MODEL AND OWING
7.	MODBUS COMMUNICATION PROTOCOL13
7.1.	SUPPORTED MODBUS FUNCTION CODES13
8.	MODBUS REGISTER TABLE14
8.1.	NUMBERING OF "0-BASED" OR "1-BASED" MODBUS ADDRESSES

8.2.	NUMBERING OF MODBUS ADDRESSES WITH "0-BASED" CONVENTION15
8.3. (STA	NUMBERING OF MODBUS ADDRESSES WITH "1 BASED" CONVENTION NDARD)
8.4.	BIT CONVENTION WITHIN A MODBUS HOLDING REGISTER
8.5.	MSB AND LSB BYTE CONVENTION WITHIN A MODBUS HOLDING REGISTER 17
8.6. HOLI	REPRESENTATION OF A 32-BIT VALUE IN TWO CONSECUTIVE MODBUS DING REGISTERS
8.7.	TYPE OF 32-BIT FLOATING POINT DATA (IEEE 754)
8.8.	Z-4RTD2-SI: MODBUS 4X HOLDING REGISTER TABLE (FUNCTION CODE 3) 19

1. **DESCRIPTION**

1.1. **DESCRIPTION**

Z-4RTD2-SI is a converter for thermistors with four independent and isolated measurement channels equipped with an analog-digital converter with a 24-bit resolution.

The insulation relates to both the power supply and the RS485 communication port.

The device measures the value of the thermistors and makes them available through the RS485 port using the Modbus RTU protocol.

1.2. COMMUNICATION PORT SPECIFICATIONS

RS485 COMMUNICATION PORTS			
Number	1		
Baudrate	From 2400 to 115200 bit/s configurable		
Parity, Data bit, Stop bit Configurable			
Protocol	Modbus RTU Slave		

USB COMMUNICATION PORT			
Number	1		
Protocol	Modbus RTU Slave		
Use	For configuration with Easy-setup software and firmware update		

2. TYPE OF SUPPORTED SENSORS

The supported sensors are:

SENSOR	STANDARD	MEASURING
		RANGE
PT100	EN 60751/A2 (ITS-90)	-200 ÷ +650°C
PT500	EN 60751/A2 (ITS-90)	-200 ÷ +750°C
PT1000	EN 60751/A2 (ITS-90)	-200 ÷ +210°C
NI100	DIN 43760	-60 ÷ +250°C
CU50	GOST 6651-2009	-180 ÷ +200°C
CU100	GOST 6651-2009	-180 ÷ +200°C
Ni120	DIN 43760	-60 ÷ +250°C
NI1000	DIN 43760	-60 ÷ +250°C

Each channel is independent, therefore it is also possible to use different sensors in the 4 channels.

3. RESPONSE MEASURES AND TIMES

3.1. SAMPLING TIMES AND MEASUREMENT UPDATE TIME

The sampling time is configurable from 25ms to 400ms per channel.

SAMPLING TIME PER		
CHANNEL		
25ms		
50ms		
100ms		
200ms		
400ms		

for example:

By activating 4 channels and setting a sampling time of 100ms on all, you get a measurement update every: 100*4 = 400 ms.

By activating 2 channels at 25 ms and 2 channels at 100 ms you get a measurement update every: 25*2 + 100*2 = 250 ms.

In order not to lose the settings, NEVER update the firmware with a version older than the one installed on the device.

3.2. *FILTER*

To each channel it is possible to insert a low pass filter to stabilize the measurement, it is a 10-sample moving average filter.

3.3. MODBUS RESPONSE TIME

Modbus Response Time: 5 ms (typical)

4. DEVICE CONFIGURATION

The device can be configured using the Easy Setup or Easy Setup 2 software, configurations are as follows:

SENSOR TYPE: allows you to select the type of sensor connected to the channel, it is also possible to disconnect the channel if it is not used.

UNIT OF MEASUREMENT: allows you to set whether the measurement must be in °C or in Ohm

3-WIRE MEASUREMENT: Allows you to set whether the sensor measurement will be carried out with 3 or 4 wires (for the 2-wire connection, refer to the 4-wire connection)

CHANNEL SPEED: Allows you to set the channel sampling time

IF CHARGE FAILURE: Allows you to replace (or not) the measured value with a temperature/resistance safety value set by the user in the event of a fault. The failure can be caused by:

- 1) Sensor beyond measurement values
- 2) Sensor breakage

ACTIVATE FILTER: Allows you to activate the filter on the selected channel, filtering allows you to obtain a slower but stable measurement.

INTERPRETATION OF FLOATING POINTS: Allows you to set whether the single precision (32 bit) Floating Point registers are to be interpreted with the most significant value on the high word or on the low word.

5. USB CONNECTION AND CONFIGURATION RESET

The front USB port allows a simple connection to configure the device via the configuration software. If it is necessary to restore the instrument's initial configuration, use the configuration software.

When a cable is connected in the USB port the RS485 port is disabled, to re-enable the RS485 port disconnect the USB cable.

6. FIRMWARE UPDATE

Through the USB port it is possible to update the firmware.

6.1. HARDWARE REVISION

It is possible to know the hardware revision of a device via the paper label printed on the side of the device. The label is:

The hardware revision can be found in the top right (in the example this is product Z-4RTD2-SI hardware revision 'B')

6.2. Z-4RTD2-SI HARDWARE REVISION "A" MODEL

In this hardware revision, the firmware update is done by pressing a hidden button.

To update the firmware:

- 1) Disconnect the device from the power supply;
- 2) Holding down the firmware update button (positioned as shown in the figure), reconnect the device to the power supply

3) Now the instrument is in update mode, stop pressing the update key and connect the USB cable to the PC

4) The device will be displayed in the PC as an "RP1-RP2" external unit

5) Copy the new firmware (uf2 extension) to the root of the "RP1-RP2" unit

a > firmware	=	Gestisci RPI-	-RP2 (D:)		
Nome 24rtd2_fw1001.uf2	Aggiungi ad Accesso rapido Copia Incolla Copia percorso Appunti	ento Sposta Copia in ~ in ~ El Organi	imina Rinomina izza	Accesso facilitato •	Proprieta • Cronologia Apri
*	← → × ↑ 🖬 > Questo PC > RPI-RP2 (I):) v Ö		(D:)	
	🗄 Documenti 🖈 ^ Nome	^	Ultima modifica	Тіро	Dimensione
12_H ¹	 ▶ Sownload INDEX.HTM Immagini Immagini Immagini INFO_UF2.TXT Windows8_0 		05/09/2008 16:20 05/09/2008 16:20	Chrome HTML Do Documento di testo	1 KB 1 KB
ISOF	Desktop Easy Z_4RTD2_H Z-4RTD2 ZR-KEY				
	Dropbox	opia in RPI-RP2 (D:)			
	Questo PC				
	Desktop				

- 6) Once the firmware file has been copied, the device will automatically reboot and be ready for use.
- 7) Verify that the fw update was successful by connecting the device to the Easy Setup software, the firmware revision (in this case 1002) is shown in the bottom left:

6.3. Z-4RTD2-SI HW REVISION "B" MODEL REVISION "B" MODEL AND FOLLOWING

In this hardware revision, the firmware update is done by moving dip switch 9 to the 'ON' position:

To update the firmware:

- 1) Disconnect the device from the power supply;
- 2) Turn dip switch 9 to ON.
- 3) Now the device is in "firmware update" mode (the TX led stays on), connect the USB cable to the PC
- 4) Power up the device
- 5) The device will be displayed in the PC as an "RP1-RP2" external unit

6) Copy the new firmware (uf2 extension) to the root of the "RP1-RP2" unit

.	🕳 🕑 📴 =	Gestisci RPI-RP2 (D:)		
a > tirmware	File Home Condividi Visualizza Str	umenti dischi		
Nome 24rtd2_fw1001.uf2	Aggiungi ad Accesso rapido	Sposta Copia in * in *	nomina Nuova cartella	Proprieta • Cronologia
	Appunti	Organizza	Nuovo	Apri
2 ×	\leftarrow \rightarrow \checkmark \uparrow \blacksquare > Questo PC > RPI-RP2 (D:)	ې ٽ 🗸	Cerca in RPI-RP2 (D:)	
	🗎 Documenti 🖈 ^ Nome	Ultin	a modifica Tipo	Dimensione
12_H1	Sownload 🖈 💿 INDEX.HTM	05/09	/2008 16:20 Chrome HTML Do	. 1 KB
	📰 Immagini 🖈 📄 INFO_UF2.TXT	05/09	/2008 16:20 Documento di testo	1 KB
	L Windows8_0			
	Desktop			
	Easy Z_4RTD2_H			
irsor	Z-4RTD2			
	ZR-KEY			
	Dropbox + Copia i	in RPI-RP2 (D:)		
	OneDrive - Persor			
	Questo PC			
	Desktop			

Once the firmware file has been copied, the device will automatically reboot

- 7) Remove power from the device
- 8) Turn dip switch 9 to OFF, the device is now in "normal operation" mode.
- 9) Power up the device
- 10) Verify that the fw update was successful by connecting the device to the Easy Setup software, the firmware revision (in this case 1002) is shown in the bottom left:

7. MODBUS COMMUNICATION PROTOCOL

The supported communication protocol is:

Modbus RTU Slave (from both the RS485 and USB ports)

For more information on these protocols, see the website: <u>http://www.modbus.org/specs.php</u>.

7.1. SUPPORTED MODBUS FUNCTION CODES

The following Modbus functions are supported:

- Read Holding Register (function 3)
- Write Single Register (function 6)
- Write Multiple registers (function 16)

All 32-bit values are contained in 2 consecutive registers

All 64-bit values are contained in 4 consecutive registers

ATTENTION!

Any registers with RW* (in flash memory) can be written up to about 10000 times The programmer must make sure the PLC/Master Modbus does not exceed this limit

8. MODBUS REGISTER TABLE

The following abbreviations are used in the register tables:

MS	Most Significant
LS	Least Significant
MSBIT	Most Significant Bit
LSBIT	Least Significant Bit
MMSW	"Most" Most Significant Word (16bit)
MSW	Most Significant Word (16bit)
LSW	Least Significant Word (16bit)
LLSW	"Least" Least Significant Word (16bit)
RO	Read Only
D\\/*	Read-Write: REGISTERS CONTAINED IN FLASH MEMORY: WRITABLE ABOUT
IXVV	10,000 TIMES MAXIMUM
D\\/**	Read-Write: REGISTERS THAT CAN BE WRITTEN ONLY AFTER WRITING THE
	COMMAND "ENABLE WRITE CUSTOM ENERGIES = 49616"
UNSIGNED 16 BIT	Unsigned integer register that can assume values from 0 to 65535
SIGNED 16 BIT	Signed integer register that can take values from -32768 to +32767
UNSIGNED 32 BIT	Unsigned integer register that can assume values from 0 to 4294967296
SIGNED 32 BIT	Signed integer register that can take values from -2147483648 to 2147483647
UNSIGNED 64 BIT	Unsigned integer register that can assume values from 0 to 18446744073709551615
SIGNED 64 BIT	Signed integer register that can assume values from -2^63 to 2^63-1
	32-bit, single-precision floating-point register (IEEE 754)
	https://en.wikipedia.org/wiki/IEEE_754
BIT	Boolean register, which can take the values 0 (false) or 1 (true)

8.1. NUMBERING OF "0-BASED" OR "1-BASED" MODBUS ADDRESSES

According to the Modbus standard the Holding Registers are addressable from 0 to 65535, there are 2 different conventions for numbering the addresses: "0-BASED" and "1-BASED". For greater clarity, Seneca shows its register tables in both conventions.

CAREFULLY READ THE DOCUMENTATION OF THE MODBUS MASTER DEVICE IN ORDER TO UNDERSTAND WHICH OF THE TWO CONVENTIONS THE MANUFACTURER HAS DECIDED TO USE

8.2. NUMBERING OF MODBUS ADDRESSES WITH "0-BASED" CONVENTION

The numbering is:

HOLDING REGISTER MODBUS ADDRESS (OFFSET)	MEANING
0	FIRST REGISTER
1	SECOND REGISTER
2	THIRD REGISTER
3	FOURTH REGISTER
4	FIFTH REGISTER

Therefore, the first register is at address 0.

In the following tables, this convention is indicated with "ADDRESS OFFSET".

8.3. NUMBERING OF MODBUS ADDRESSES WITH "1 BASED" CONVENTION (STANDARD)

The numbering is that established by the Modbus consortium and is of the type:

HOLDING REGISTER MODBUS ADDRESS 4x	MEANING
40001	FIRST REGISTER
40002	SECOND REGISTER
40003	THIRD REGISTER
40004	FOURTH REGISTER
40005	FIFTH REGISTER

In the following tables this convention is indicated with "*ADDRESS 4x*" since a 4 is added to the address so that the first Modbus register is 40001.

A further convention is also possible where the number 4 is omitted in front of the register address:

HOLDING MODBUS ADDRESS WITHOUT 4x	MEANING
1	FIRST REGISTER
2	SECOND REGISTER
3	THIRD REGISTER
4	FOURTH REGISTER
5	FIFTH REGISTER

8.4. BIT CONVENTION WITHIN A MODBUS HOLDING REGISTER

A Modbus Holding Register consists of 16 bits with the following convention:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

For instance, if the value of the register in decimal is 12300

the value 12300 in hexadecimal is: 0x300C

the hexadecimal 0x300C in binary value is: 11 0000 0000 1100

So, using the above convention, we get:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

8.5. MSB and LSB BYTE CONVENTION WITHIN A MODBUS HOLDING REGISTER

A Modbus Holding Register consists of 16 bits with the following convention:

| BIT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

LSB Byte (Least Significant Byte) defines the 8 bits ranging from Bit 0 to Bit 7 included, we define MSB Byte (Most Significant Byte) the 8 bits ranging from Bit 8 to Bit 15 inclusive:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		BYTE	MSB						•	BYTE	ELSB			

8.6. REPRESENTATION OF A 32-BIT VALUE IN TWO CONSECUTIVE MODBUS HOLDING REGISTERS

The representation of a 32-bit value in the Modbus Holding Registers is made using 2 consecutive Holding Registers (a Holding Register is a 16-bit register). To obtain the 32-bit value it is therefore necessary to read two consecutive registers:

For example, if register 40064 contains the 16 most significant bits (MSW) while register 40065 contains the least significant 16 bits (LSW), the 32-bit value is obtained by composing the 2 registers:

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					400	64 MO	ST SIG	NIFICA	NT W	ORD					

BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT	BIT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					4006	5 LEA	ST SIG	NIFICA	ANT W	ORD					

 $Value_{32bit} = Register_{LSW} + (Register_{MSW} * 65536)$

In the reading registers it is possible to swap the most significant word with the least significant word, therefore it is possible to obtain 40064 as LSW and 40065 as MSW.

8.7. TYPE OF 32-BIT FLOATING POINT DATA (IEEE 754)

The IEEE 754 standard (<u>https://en.wikipedia.org/wiki/IEEE_754</u>)_defines the format for representing floating point numbers.

As already mentioned, since it is a 32-bit data type, its representation occupies two 16-bit holding registers. To obtain a binary/hexadecimal conversion of a floating point value it is possible to refer to an online converter at this address:

http://www.h-schmidt.net/FloatConverter/IEEE754.html

	IEEE 754 Converter (JavaScript), V0.22												
	Sign	Exponent		Mantissa									
Value:	+1	21		1.2699999809265137									
Encoded as:	0	128		2264924									
Binary:													
	You er	ntered	2.54										
	Value	actually stored in float:	2.5399999	6185302734375	+1								
	Error o	due to conversion:	-3.8146972	265625E-8	1								
	Binary	Representation	01000000	001000101000111101011100									
	Hexad	lecimal Representation	0x40228f5	c									

Using the last representation the value 2.54 is represented at 32 bits as:

0x40228F5C

Since we have 16-bit registers available, the value must be divided into MSW and LSW:

0x4022 (16418 decimal) are the 16 most significant bits (MSW) while 0x8F5C (36700 decimal) are the 16 least significant bits (LSW).

8.8. Z-4RTD2-SI: MODBUS 4X HOLDING REGISTER TABLE (FUNCTION CODE 3)

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/W	ТҮРЕ
40001	0	MACHINE IDENTIFICATION	-	-	Identification code	RO	UNSIGNED 16 BIT
40002	1	ERRORS			Bit[15] 1 = IN1 MEASURE OUT OF RANGE 0 = IN1 MEASURE OK Bit[14] 1 = IN2 MEASURE OUT OF RANGE 0 = IN2 MEASURE OK Bit[13] 1 = IN3 MEASURE OUT OF RANGE 0 = IN3 MEASURE OK Bit[12] 1 = IN4 MEASURE OUT OF RANGE 0 = IN4 MEASURE OK Bit[11] 1 = IN1 BURNOUT 0 = IN1 OK Bit[10] 1 = IN2 BURNOUT 0 = IN2 OK Bit[9] 1 = IN3 BURNOUT 0 = IN3 OK Bit[8] 1 = IN4 BURNOUT 0 = IN4 OK Bit[70] NOT USED	RO	UNSIGNED 16 BIT
40003	2	16 bit MEASURE	-	1	If Measure Type = "°C" unit measure is [°C/10] For example 2000 -> 200.0° C If Measure Type = "Ohm" unit measure is: for PT100/NI100/NI120/ CU50/CU100 [Ohm/100] (example	RO	SIGNED 16 BIT
ALL RIGHTS RE PUBLICATION MA	SERVED. NO P	ART OF THIS ICED WITHOUT	ww.senec	a.it	MI00584-3-EN		Page 19

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/W	ТҮРЕ
					20000 -> 200.00 Ohm) for PT1000/PT500/NI100 0 [Ohm/10] (example 2000 -> 200.0 Ohm)		
40004	3	16 bit MEASURE	-	2	If Measure Type = "°C" unit measure is [°C/10] For example 2000 -> 200.0° C If Measure Type = "Ohm" unit measure is: for PT100/NI100/NI120/ CU50/CU100 [Ohm/100] (example 20000 -> 200.00 Ohm) for PT1000/PT500/NI100 0 [Ohm/10] (example 2000 -> 200.0 Ohm)	RO	SIGNED 16 BIT
40005	4	16 bit MEASURE	-	3	If Measure Type = "°C" unit measure is [°C/10] For example 2000 -> 200.0° C If Measure Type = "Ohm" unit measure is: for PT100/NI100/NI120/ CU50/CU100 [Ohm/100] (example 20000 -> 200.00 Ohm) for PT1000/PT500/NI100 0 [Ohm/10] (example 2000 -> 200.0 Ohm)	RO	SIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/W	ТҮРЕ
40006	5	16 bit MEASURE	-	4	If Measure Type = "°C" unit measure is [°C/10] For example 2000 -> 200.0° C If Measure Type = "Ohm" unit measure is: for PT100/NI100/NI120/ CU50/CU100 [Ohm/100] (example 20000 -> 200.00 Ohm) for PT1000/PT500/NI100 0 [Ohm/10] (example 2000 -> 200.0 Ohm)	RO	SIGNED 16 BIT
40007	6	FLOAT MEASURE	MSW	1	Measure [°C] or	RO	FLOAT 32
40008	7				[Unin] Measure [°C] or		
40010	9	FLOAT MEASURE	LSW	2	[Ohm]	RO	FLOAT 32
40011	10		MSW		Measure [°C] or		
40012	11	FLOAT MEASURE	LSW	3	[Ohm]	RO	FLOAT 32
40013	12		MSW	Δ	Measure [°C] or	PO	
40014	13	FLUAT WIEASURE	LSW	4	[Ohm]	RU	FLUAT 52
40015	14	REVISION FIRMWARE	-	-	Firmware Revision	RO	UNSIGNED 16 BIT
40035	34	RS485 ADDRESS_PARITY	_	-	Bit[15:8] RS485 Modbus Station Address [1255] Bit[7:0] RS485 Parity : 0=no, 1=even, 2=odd	RW*	UNSIGNED 16 BIT
40036	35	RS485 BAUDRATE	-	-	Bit[15:8] Baudrate: 0=4800 1=9600 2=19200 3=38400 4=57600 5=115200 6=1200 7=2400	RW*	UNSIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/W	ТҮРЕ
40037	36	INPUT CONFIGURATION	_	1	Bit[1512] Not Used Bit[11:9] Filter: O=not active 1=active Bit[8:6] RTD TYPE O= PT100 1= NI100 2= PT500 3= PT1000 4= CU50 5= CU100 6= NI120 7= NI1000. Bit[5]: Measure Type O= Temperature, 1= Resistance Bit[4]: RTD Measure O= RTD 2/4 wires 1= RTD 3 wires Bit[2:0] Channel Speed O= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT
40038	37	INPUT CONFIGURATION	-	2	Bit[1512] Not Used Bit[11:9] Filter: O=not active 1=active Bit[8:6] RTD TYPE O= PT100 1= NI100 2= PT500 3= PT1000 4= CU50 5= CU100 6= NI120 7= NI1000. Bit[5]: Measure Type O= Temperature, 1= Resistance Bit[5]: Measure Type O= Temperature, 1= Resistance Bit[4]: RTD Measure O= RTD 2/4 wires 1= RTD 3 wires Bit[2:0] Channel Speed O= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/W	ТҮРЕ
40039	38	INPUT CONFIGURATION	_	3	Bit[1512] Not Used Bit[11:9] Filter: O=not active 1=active Bit[8:6] RTD TYPE 0= PT100 1= NI100 2= PT500 3= PT1000 4= CU50 5= CU100 6= NI120 7= NI1000. Bit[5]: Measure Type 0= Temperature, 1= Resistance Bit[4]: RTD Measure 0= RTD 2/4 wires 1= RTD 3 wires Bit[2:0] Channel Speed 0= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT
40040	39	INPUT CONFIGURATION	_	4	Bit[1512] Not Used Bit[11:9] Filter: O=not active 1=active Bit[8:6] RTD TYPE O= PT100 1= NI100 2= PT500 3= PT1000 4= CU50 5= CU100 6= NI120 7= NI1000. Bit[5]: Measure Type O= Temperature, 1= Resistance Bit[5]: Measure Type O= Temperature, 1= Resistance Bit[2]: RTD Measure O= RTD 2/4 wires 1= RTD 3 wires Bit[2:0] Channel Speed O= disabled, 1= 25ms, 2= 50ms, 3= 100ms, 4= 200ms, 5= 400ms	RW*	UNSIGNED 16 BIT

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/W	ТҮРЕ
40041	40	CONFIGURATION2	-	-	Bit[15] Floating Point Representation O= MSW FIRST 1= LSW FIRST Bit[144] NOT USED Bit[3] IN1 FAULT BEHAVIOUR 1 = LOAD FAIL VALUE 0 = KEEP LAST VALUE Bit[2] IN2 FAULT BEHAVIOUR 1 = LOAD FAIL VALUE 0 = KEEP LAST VALUE Bit[1] IN3 FAULT BEHAVIOUR 1 = LOAD FAIL VALUE 0 = KEEP LAST VALUE Bit[0] IN4 FAULT BEHAVIOUR 1 = LOAD FAIL VALUE 0 = KEEP LAST VALUE	RW*	UNSIGNED 16 BIT
40042	41	MEASURE VALUE	-	1	Fault value to load [°C/10] or [Ohm] if Fault Behaviour is configured in "Load fail value"	RW*	SIGNED 16 BIT
40043	42	MEASURE VALUE	-	2	Fault value to load [°C/10] or [Ohm] if Fault Behaviour is configured in "Load fail value"	RW*	SIGNED 16 BIT
40044	43	MEASURE VALUE	-	3	Fault value to load [°C/10] or [Ohm] if Fault Behaviour is configured in "Load fail value"	RW*	SIGNED 16 BIT
40045	44	MEASURE VALUE	-	4	Fault value to load [°C/10] or [Ohm] if Fault Behaviour is configured in "Load fail value"	RW*	SIGNED 16 BIT
40048	47	COMMAND REGISTER	-	-	Register for command execution (decimal): REBOOT=52428	RW	UNSIGNED 16 BIT
ALL RIGHTS RE PUBLICATION MA	SERVED. NO P	ART OF THIS CED WITHOUT	MI00584-3-EN		Page 24		

ADDRESS (4x)	OFFSET	REGISTER	ORDER	CHANNEL	DESCRIPTION	R/W	ТҮРЕ	
					SAVE			
					CONFIGURATION =			
					51792			
					SAVE AND REBOOT =			
					49568			
40133	132	OFFSET [°C / Ohm]	MSW	1	Offset for the	RW*	FLOAT 32	
40124	122		LSW		measure channel			
40134	155				[°C/Ohm]			
40135	134	OFFSET [°C / Ohm]	MSW	V 2	Offset for the	RW*	FLOAT 32	
40120	125		LSW		measure channel			
40136	135				[°C/Ohm]			
40137	136		MSW		Offset for the			
40120	127	OFFSET [°C / Ohm]	OFFSET [°C / Ohm]		3	measure channel	RW*	FLOAT 32
40138	137		LSVV		[°C/Ohm]			
40139	138	138 139 OFFSET [°C / Ohm]	MSW		Offset for the			
40140	139		LSW	4	measure channel	RW*	FLOAT 32	
			2011		[°C/Ohm]			

By adding the offset 1000 to the register it is possible to obtain 32-bit swapped values, for example the floating point current measurement register:

40007	6	FLOAT MEASURE 1	MSW
40008	7		LSW

The same register is also located at 41007-41008 swapped

41007	1006		LSW
41008	1007	FLOAT MEASURE I SWAPPED	MSW