

MANUALE UTENTE

Z-FLOWCOMPUTER / Z-FLOWCOMPUTER-B

Computer per il calcolo di portata ed energia di liquidi, gas e vapore

SENECA s.r.l.

Via Austria, 26 - 35127 - PADOVA - ITALY

Tel. +39.049.8705355 - 8705359 Fax. +39.049.8706287

Web site: www.seneca.it

Technical assistance: support@seneca.it (IT), support@seneca.it (Other)

Commercial reference: <u>commerciale@seneca.it</u> (IT), <u>sales@seneca.it</u> (Other)

This document is property of SENECA srl. Duplication and reproduction are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision.

To use the product safely and effectively, read carefully the following instructions before use. The product must be used only for the use for which it was designed and built. Any other use must be considered with full responsibility of the user. The installation, implementation and set-up is allowed only for authorized operators; these ones must be people physically and intellectually suitable. Set up must be performed only after a correct installation and the user must perform every operation described in the installation manual carefully. Seneca is not considered liable of failure, breakdown, accident caused for ignorance or failure to apply the indicated requirements. Seneca is not considered liable of any unauthorized changes. Seneca reserves the right to modify the device, for any commercial or construction requirements, without the obligation to promptly update the reference manuals.

No liability for the contents of this documents can be accepted. Use the concepts, examples and other content at your own risk. There may be errors and inaccuracies in this document, that may of course be damaging to your system. Proceed with caution, and although this is highly unlikely, the author(s) do not take any responsibility for that. Technical features subject to change without notice.

MI00409-6-IT

Date	Revisione	Notes
22/05/2015	1.00	Prima versione.
29/05/2015	1.01	Aggiunto capitolo per l'aggiornamento del software del display
18/05/2016	1.02	Cambiato da Nr4 ingressi digitali a Nr 1 ingressi digitali utilizzati, Nr 3 per usi futuri
26/09/2016	1.03	Aggiunto il supporto ai gas Naturali (AGA8-92DC, AGA8 Gross method 2, SGERG88) Aggiunto il supporto ai gas reali (RK, RKS) Aggiunte tabelle di verifica dei calcoli sui GAS Naturali
02/11/2020	MI00409-4	Aggiunto modello Z-FLOWCOMPUTER-B
10/03/2021	MI00409-5	Aggiornamento per Easy Flow Computer 1.64 Aggiornamento per nuovo programma "vapore" rev v1255 con T2 letta anche da IN3 Aggiunti gli allarmi su HMI
22/02/2024	MI00409-6	Fix Modbus Registers

Indice

1.	GLO	SSARIO	8
2.	ABB	REVIAZIONI	9
3.	INTF	ODUZIONE	9
3.1.	SPE	CIFICHE GENERALI	10
4.	CON	FIGURAZIONE DI FABBRICA DI Z-FLOWCOMPUTER	11
5.	SIG	NIFICATO DEI LED DI Z-FLOWCOMPUTER	11
6.	INTE	GRAZIONE DELLE MISURE: CUTOFF E FUORI RANGE	12
7.	CON 12	FIGURAZIONE DI Z-FLOWCOMPUTER TRAMITE EASY FLOW COMI	PUTER
7.1.	COI	NNESSIONE DI Z-FLOWCOMPUTER AL PC	13
7.2.	PAG		14
7.3.	MIS	SURTORI DI PORTATA SUPPORTATI	16
7.	3.1.	ORIFIZIO CALIBRATO CON USCITA LINEARE (VOLUMETRICO)	16
7.	3.2.	ORIFIZIO CALIBRATO CON USCITA QUADRATICA (VOLUMETRICO)	16
7.	3.3.	TURBINA (VOLUMETRICO)	16
7.	3.1.	VORTEX (VOLUMETRICO)	17
7.	3.2.	MAGNETICO (VOLUMETRICO)	17
7.	3.3.	VORTEX TARATO SU UN PUNTO P/T (MASSICO)	17
7.	3.4.	VORTEX CON COMPENSATORE INTEGRATO (MASSICO)	17
7.	3.1.	ORIFIZIO CALIBRATO SU UN PUNTO P/T CON USCITA LINEARE (MASSICO)	17
7.	3.2.	ORIFIZIO CALIBRATO SU UN PUNTO P/T CON USCITA CON USCITA QUADRATICA (MASSICO)	17
7.4.	MIS	URATORI DI PRESSIONE SUPPORTATI	18
7.5.	SEN	ISORI DI TEMPERATURA SUPPORTATI	
7.6.	USC	TTE DIGITALI	19
7.7.	USC		19
8.	APP	LICAZIONI CON ACQUA E VAPORE: CALCOLO DI MASSA E VAPOF	RE20
8.1.	TIP	O DI APPLICAZIONE	21
8.2.	TIP	D DI FLUIDO	21

8.3.	MISURA DI PORTATA21
8.4.	MISURA DI PRESSIONE
8.5.	MISURA DI TEMPERATURA22
8.6.	USCITE DIGITALI23
8.7.	USCITA ANALOGICA23
8.8.	DISPLAY (SOLO MODELLO Z-FLOWCOMPUTER) E DATALOGGER23
8.8.1	. CONFIGURAZIONE VARIABILI
8.8.2	PAGINA1 PAGINA5
8.9.	CONNESSIONI
8.10.	VARIABILI CALCOLATE
9. A	PPLICAZIONI CON ACQUA E VAPORE: DIFFERENZA TERMICA VAPORE-
ACQ	JA28
9.1.	TIPO DI APPLICAZIONE
9.2.	TIPO DI FLUIDO
9.3.	MISURA DI PORTATA
9.4.	MISURA DI PRESSIONE
9.5.	MISURA DI TEMPERATURA DI MANDATA (T1) E DI RITORNO (T2)30
9.6.	USCITE DIGITALI
9.7.	USCITA ANALOGICA
9.8.	DISPLAY (SOLO MODELLO Z-FLOWCOMPUTER) E DATALOGGER
9.8.1	
9.8.2	2. PAGINA1 PAGINA5
9.9.	CONNESSIONI
9.10.	VARIABILI CALCOLATE
10.	CORRETTORE DI VOLUME PER GAS NATURALI / REALI
10.1.	TIPO DI APPLICAZIONE
10.2.	MISURA DI PORTATA
10.3.	MISURA DI PRESSIONE
10.4.	MISURA DI TEMPERATURA

10.5.	CORRETTORE DI VOLUME	
10.5	.1. SGERG88 ISO 12213-3	
10.5	.2. AGA8 GROSS METHOD2	
10.5	.3. AGA8 92-DC ISO 12213-2	
10.5	.1. RK - Redlich-Kwong	
10.5	.2. RKS - Redlich-Kwong-Soave	40
10.6.	USCITE DIGITALI	41
10.7.	USCITA ANALOGICA	41
10.8.	DISPLAY (SOLO MODELLO Z-FLOWCOMPUTER) E DATALOGGER	41
10.8	.1. CONFIGURAZIONE VARIABILI	
10.8	.2. PAGINA1 PAGINA5	43
10.9.	CONNESSIONI	44
10.10.	VARIABILI CALCOLATE APPLICAZIONE CORRETTORE DI VOLUME PER GAS NATURALI / REALI	45
11.	CORRETTORE DI VOLUME PER GAS IDEALI	45
12.	UTILIZZO DEL DISPLAY DEL MODELLO Z-FLOWCOMPUTER	46
12.1.	IMPOSTAZIONE INDIRIZZO IP	49
12.2.	IMPOSTAZIONE DATA/ORA	49
13.	II WEBSERVER	
		50
13.1.	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER	50
13.1. 13.1	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER	50 50
13.1. 13.1 13.1	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER	50 50 50 51
13.1. 13.1 13.1 13.1	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER	50
 13.1. 13.1 13.1 13.1 14. 	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER 1. REAL TIME VIEW 2. SETUP 3. LOCAL TIME SETUP IL PROTOCOLLI MODBUS RTU E MODBUS TCP-IP	50 50 51 55
 13.1. 13.1 13.1 13.1 14. 14.1. 	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER	
 13.1. 13.1 13.1 13.1 14. 14.1. 14.2. 	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER. 1. REAL TIME VIEW 2. SETUP 3. LOCAL TIME SETUP. IL PROTOCOLLI MODBUS RTU E MODBUS TCP-IP TABELLA DEI REGISTRI MODBUS INVIO DI COMANDI TRAMITE PROTOCOLLO MODBUS	5050505155565760
 13.1. 13.1 13.1 14. 14.1. 14.2. 15. MOD 	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER 1. REAL TIME VIEW 2. SETUP 3. LOCAL TIME SETUP IL PROTOCOLLI MODBUS RTU E MODBUS TCP-IP TABELLA DEI REGISTRI MODBUS INVIO DI COMANDI TRAMITE PROTOCOLLO MODBUS FIRMWARE E SOFTWARE UPDATE DI Z-FC E DEL DISPLAY ELLO Z-FLOWCOMPUTER)	50 50 50 51 55 56
 13.1. 13.1 13.1 14. 14.1. 14.2. 15. MOD 15.1. 	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER 1. REAL TIME VIEW 2. SETUP 3. LOCAL TIME SETUP IL PROTOCOLLI MODBUS RTU E MODBUS TCP-IP TABELLA DEI REGISTRI MODBUS INVIO DI COMANDI TRAMITE PROTOCOLLO MODBUS FIRMWARE E SOFTWARE UPDATE DI Z-FC E DEL DISPLAY ELLO Z-FLOWCOMPUTER)	50 50 50 50 51 55 56
 13.1. 13.1 13.1 13.1 14. 14.1. 14.2. 15. MOD 15.1. 15.1 	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER 1. REAL TIME VIEW 2. SETUP	
 13.1. 13.1 13.1 13.1 14. 14.1. 14.2. 15. MOD 15.1. 15.1 	CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER	

16.	CONNESSIONE AL SERVER FTP DI Z-FLOWCOMPUTER	62
17.	STANDARD DI CALCOLO UTILIZZATI	65
17.1.	STANDARD DI CALCOLO IAPWS-IF 97	65
17.	1.1. REGIONI INDIVIDUATE DALLA IAPWS-IF 97	
17.2.	EQUAZIONE DI STATO DEI GAS IDEALI	67
17.3.	EQUAZIONI DI STATO REDLINCH-KWONG E REDLINCH-KWONG-SOAVE (RK, RKS)	67
17.	3.1. EQUAZIONE DI STATO DI REDLINCH-KWONG (RK)	67
17.	3.2. EQUAZIONE DI STATO DI REDLINCH-KWONG-SOAVE (RKS)	68
17.4.	STANDARD DI CALCOLO SGERG88 (ISO 12213-3)	69
17.	4.1. TIPOLOGIA DI GAS UTILIZZABILE	70
17.	4.2. INCERTEZZA DEL CALCOLO	71
17.5.	STANDARD DI CALCOLO AGA8 GROSS METHOD 2	72
17.	5.1. TIPOLOGIA DI GAS UTILIZZABILE	72
17.	5.1. INCERTEZZA DEL CALCOLO	73
17.6.	STANDARD DI CALCOLO AGA8 92-DC (ISO 12213-2)	73
17.	5.1. TIPOLOGIA DI GAS UTILIZZABILE	74
17.	5.1. INCERTEZZA DEL CALCOLO	75
10		
MET	HOD 2	
		•
19.	VERIFICA DELL'IMPLEMENTAZIONE DELL'ALGORITMO AGA8 92-D	DC ISO
1221	3-2	77
20. 3	VERIFICA DELL'IMPLEMENTAZIONE DELL'ALGORITMO SGERG88 78	ISO12213-

Seneca Z-FLOWCOMPUTER

ATTENZIONE!

IN NESSUN CASO SENECA O I SUOI FORNITORI SARANNO RITENUTI RESPONSABILI PER EVENTUALI PERDITE DI DATI ENTRATE O PROFITTI, O PER CAUSE INDIRETTE, CONSEQUENZIALI O INCIDENTALI, PER CAUSE (COMPRESA LA NEGLIGENZA), DERIVANTI O COLLEGATE ALL 'USO O ALL'INCAPACITÀ DI USARE IL SOFTWARE, ANCHE SE SENECA È STATA AVVISATA DELLA POSSIBILITÀ DI TALI DANNI. SENECA, LE SUSSIDIARIE O AFFILIATE O SOCIETÀ DEL GRUPPO O DISTRIBUTORI E RIVENDITORI SENECA NON GARANTISCONO CHE LE FUNZIONI CONTENUTE NEL SOFTWARE E/O DEL FIRMWARE DEL PRODOTTO SODDISFERANNO FEDELMENTE LE ASPETTATIVE E CHE IL SOFTWARE E/O IL FIRMWARE DEL PRODOTTO O IL PRODOTTO STESSO SIA ESENTE DA ERRORI, BUG O CHE FUNZIONI ININTERROTTAMENTE.

1. GLOSSARIO

Modbus RTU

Un protocollo aperto per le comunicazioni seriali sviluppato da Modicon Inc. (AEG Schneider Automation International S.A.S.). Semplice e robusto, da allora è diventato un protocollo di comunicazione standard de facto.

Per altre info: <u>http://www.modbus.org/specs.php</u>

• MODBUS TCP-IP

Il protocollo Modbus RTU con interfaccia TCP che funziona su Ethernet invece che su seriale.

Per altre info: http://www.modbus.org/specs.php

• MODBUS RTU MASTER-SLAVE

Il Master è collegato con uno o più slave, lo slave attende una richiesta di registri dal master. In una rete Modbus è consentito solo un master, per ovviare a questa limitazione è necessario utilizzare un gateway Modbus.

• MODBUS TCP-IP CLIENT-SERVER

Il client (chiamato "Master" nel protocollo Modbus RTU) stabilisce una connessione con il server (chiamato "Slave" nel protocollo Modbus RTU). Il server attende una connessione in entrata da parte del Client. Una volta stabilita la connessione, il server fornisce/scrive i registri richiesti da parte del Client.

• WEBSERVER

Un software che memorizza, elabora e fornisce pagine web per i client. I client web possono essere PC, smartphone, tablet. Per accedere alle pagine web è necessario un browser (Chrome, Internet Explorer, Firefox, ecc ...).

• PROGRAMMA DI Z-FLOWCOMPUTER

Un programma è un insieme di istruzioni che permetto a Z-FC di eseguire delle Applicazioni. Attualmente esistono 2 programmi: Programma 1 (dedicato alle applicazioni di calcolo su acqua e vapore) e Programma 2 (dedicato alla correzione di volume su gas ideali, reali e naturali). Per cambiare programma è necessario utilizzare il software Easy Flow Computer.

2. ABBREVIAZIONI

Nel seguente documento vengono utilizzate le seguenti abbreviazioni:

Z-FC = Z-FLOWCOMPUTER

IAPWS-IF97 o IAPWS97 = International Association for Porperties of Water and Steam Industrial Formulation 1997

RK = Redlich Kwong Formula

RKS = Redlich Kwong Soave Formula

3. INTRODUZIONE

Z-FC è un dispositivo integrato in grado di eseguire il calcolo della portata massica e della quantità di calore in base alla portata volumica, pressione e temperatura associate utilizzando standard di calcolo internazionali.

Z- FC è in grado di determinare tutti i principali parametri termodinamici del vapore o dell'acqua.

È inoltre dotato di contatori azzerabili e non azzerabili per contabilizzare consumi o scambio di calore in genere.

Oltre ai calcoli su acqua o vapore Z-FLOWCOMPUTER può effettuare la correzione di volume dei gas naturali, ideali o reali.

3.1. SPECIFICHE GENERALI

SPECIFICHE GENERALI					
Porta Ethernet	Nr.1 10-100 Mbps				
Porta micro USB laterale	Nr.1				
Slot per micro SD card	Max. 32 GB				
Isolamento dell'alimentazione	1500 Vac rispetto ai restanti circuiti in bassa tensione				
Batterie di backup ricaricabili	Per chiusura corretta del filesystem su SD card e per				
Standard di calcolo supportati:	IAPWS IF-97 AGA8 GROSS METHOD 2 AGA8-92DC (ISO 12213-2), SGERG88 (ISO 12213-3) Formula di Redlich-Kwong (RK) Formula di Redlich-Kwong-Soave (RKS) Legge dei gas ideali				
SOLO MODELLO Z-FLOWCOMPUTER	FLOWCOMPLITER tramite cavo ethernet				
INGRESSI ANALOGICI					
Nr. 2 Ingressi Tensione/Corrente	0-30 Volt / 0-20mA, ADC 16 Bit				
Nr. 1 Ingressi RTD/Tensione/Corrente	0-10 Volt / 0-20mA / PT100 2, 3 o 4 fili / Ni100 2, 3, 4 fili / PT500 2, 3, 4 fili / PT1000 2, 3, 4 fili. ADC 15 bit				
INGRESSI DIGITALI					
Nr 1 usato, Nr 3 per usi futuri	Configurabili NPN/PNP, utilizzabili anche come contatori (Max 250 Hz, default PNP).				
USCITE DIGITALI					
Nr. 2	A Relè				
USCITA ANALOGICA					
Nr. 1	Configurabile in Tensione/Corrente				
PROTOCOLLI DI COMUNICA	ZIONE SUPPORTATI				
Modbus RTU Slave su seriale	Disponibile tramite morsetto				
Modbus TCP-IP	Server tramite Ethernet (max 1 client Modbus TCP-IP)				
FTP Server	Max 1 Client				
Web Server	Max 1 Client				

4. CONFIGURAZIONE DI FABBRICA DI Z-FLOWCOMPUTER

La configurazione di fabbrica di Z-FLOWCOMPUTER è la seguente:

IP di tipo STATICO

Indirizzo IP = 192.168.90.101

Gateway:IP = 192.168.90.1

Programma caricato: Programma 1 Acqua e Vapore

5. SIGNIFICATO DEI LED DI Z-FLOWCOMPUTER

LED	STATO	Significato dei LED	
PWR/STS Verde	Acceso fisso	Il dispositivo è alimentato correttamente	
SD/STS Rosso	Lampeggio	Accesso a micro SD card	
ETH ACT Giallo	Lampeggio	Transito pacchetti su porta Ethernet	
ETH LNK Verde	Lampeggio	Connessione su RJ45 attivata	
DI1 Rosso	Acceso fisso	Ingresso 1 digitale PNP chiuso a +12V	
DI1 Rosso	Spento	Ingresso 1 digitale PNP aperto	
DI2 Rosso	Acceso fisso	Ingresso 2 digitale PNP chiuso a +12V	
DI2 Rosso	Spento	Ingresso 2 digitale PNP aperto	
DI3 Rosso	Acceso fisso	Ingresso 3 digitale PNP chiuso a +12V	
DI3 Rosso	Spento	Ingresso 3 digitale PNP aperto	
DI4 Rosso	Acceso fisso	Ingresso 4 digitale PNP chiuso a +12V	
DI4 Rosso	Spento	Ingresso 4 digitale PNP aperto	
DO1 Rosso	Acceso fisso	Uscita digitale 1, relè eccitato	
DO1 Rosso	Spento	Uscita digitale 1, relè diseccitato	
DO2 Rosso	Acceso fisso	Uscita digitale 2, relè eccitato	
DO2 Rosso	Spento	Uscita digitale 2, relè diseccitato	
485 ACT Verde	Lampeggio	Attività lettura su scheda I/O interna	

6. INTEGRAZIONE DELLE MISURE: CUTOFF e FUORI RANGE

Z-FC effettua l'integrazione e la contabilizzazione solo se le misure in ingresso si trovano nel corretto range di misura e la portata si trova fuori dalla modalità di cutoff.

Le modalità cutoff e fuori range funzionano solo con le misure analogiche (quindi non funzionano con sensori di portata con uscita ad impulsi).

Per Z-FC la modalità di cutoff è attiva se la misura di Portata è al di sotto del 4% del fondo scala di misura impostato.

Per Z-FC la modalità di fuori range è attiva se la misura di Portata oppure di Pressione oppure di Temperatura è al di sopra del 4% del fondo scala di misura impostato o al di sotto del 4% dell'inizio scala di misura impostato.

7. CONFIGURAZIONE DI Z-FLOWCOMPUTER TRAMITE EASY FLOW COMPUTER

La configurazione di Z-FC avviene tramite il software Easy FLOW COMPUTER installabile su sistemi operativi Microsoft Windows™.

Il software può essere scaricato gratuitamente dal sito internet <u>www.seneca.it</u> nella sezione Z-flowcomputer.

Il software si presenta in 3 sezioni principali:

- A) È il menù di connessione e di gestione
- B) È il menù delle possibili sezioni (dipende dal tipo di applicazione scelto)
- C) È La pagina dei parametri della sezione

2	Easy Flow Computer v1.43	- 🗆 ×
<u>F</u> ile Lingua <u>?</u>		
Non connesso		OENEC Nº
Connetti dispositivo		Deinera
Configurazione	Configurazione Generale	
Cerca nelle sezioni	Tipo Applicazione Correttore di Volume per gas Naturali (SGERG88) - BETA 🗸	
	IP statico	
Configurazione Generale Misura di Portata/Volume	Nome Strumento ZFLOW	
Misura di Pressione	Subnet Mask 255 1 255 1 255	
Misura di Temperatura	Indirizzo IP Statico V Gataway 192 A 162 A 90 A 1 A	
Correttore di Volume SGERG88		
Uscite Digitali	FTP server Accesso Liser/Password Y	
Uscita Analogica		
Display e Datalogger	FTP server accesso protetto Porta Seriale Modbus Slave	
	FTP Server User: admin Station Address	
В	FTP Server Password: admin Baud Rate 38400 V	
	Pantà NO 🗸	
	Correttore di Volume Condizioni Base Data Bit 8 V	
	Valori di Base Standard V	
	Pressione base 1.01325 to bar Stop bit	
	Temperatura base 15,00000	
) c

7.1. CONNESSIONE DI Z-FLOWCOMPUTER AL PC

Non connesso					
Connetti dispositivo			×	-M	
Connetti dispositivo	APRI	SALVA	LEGGI	INVIA	MODE

Per connettere Z-FLOWCOMPUTER al PC utilizzare un cavo micro USB.

Se si volesse cambiare il programma di fabbrica sarà necessario collegare al PC anche il cavo ethernet.

Una volta connesso il cavo USB premere il pulsante "Connetti dispositivo".

A questo punto è possibile utilizzare i pulsanti a disposizione:

APRI

Apre una configurazione precedentemente salvata su file

SALVA

Salva l'attuale configurazione su file

LEGGI

Legge la configurazione attualmente presente su Z-FLOWCOMPUTER tramite il cavo USB

INVIA

Legge la configurazione a Z-FLOWCOMPUTER tramite il cavo USB

MODE

Permette di cambiare o aggiornare il programma di Z-flowcomputer tramite il cavo ethernet

7.2. PAGINA CONFIGURAZIONE GENERALE

Nella pagina di configurazione generale sono presenti i parametri configurazione della comunicazione e i parametri di calcolo che sono necessari per alcune applicazioni:

	Configu	razione Generale	
Tipo Applicazione	Correttore di Volume per gas Naturali	(SGERG88) - BETA	~
Nome Strumento ZFLOW Indirizzo IP Statico	v ord v	IP statico Indirizzo IP 192 ↓ Subnet Mask 255 ↓ Gateway 192 ↓ DNS 0 ↓	168 90 101 255 255 0 168 90 1 0 0 0
FTP server accesso protetto		Porta Seriale Modbus Slave	
FTP Server User: admin FTP Server Password: admin		Station Address Baud Rate	1 () 38400 V
Correttore di Volume Condizioni Base Valori di Base Standard	v	Parità Data Bit Stop Bit	NO V 8 V
Pressione base 1,01325 Temperatura base 15,00000	∳ bar	Stop Dit	

TIPO APPLICAZIONE

Permette di scegliere il tipo di applicazione che Z-FLOWCOMPUTER deve utilizzare, è possibile scegliere tra le seguenti applicazioni:

TIPO APPLICAZIONE	PROGRAMMA DA UTILIZZARE
CALCOLO DI MASSA E VAPORE	PROGRAMMA 1
DIFFERENZA TERMICA VAPORE – ACQUA (RISCALDAMENTO)	PROGRAMMA 1
DIFFERENZA TERMICA VAPORE – ACQUA (RAFFREDDAMENTO)	PROGRAMMA 1
CORRETTORE DI VOLUME PER GAS NATURALI (SGERG88)	PROGRAMMA 2
CORRETTORE DI VOLUME PER GAS NATURALI (SGERG88)	PROGRAMMA 2
CORRETTORE DI VOLUME PER GAS NATURALI (AGA8 GROSS METHOD2)	PROGRAMMA 2
CORRETTORE DI VOLUME PER GAS NATURALI (AGA8 92-DC)	PROGRAMMA 2
CORRETTORE DI VOLUME PER GAS REALI (RK, RKS)	PROGRAMMA 2
CORRETTORE DI VOLUME PER GAS IDEALI	PROGRAMMA 2

NOME STRUMENTO

È il nome che identifica lo Z-FLOWCOMPUTER in uso, è anche il prefisso del nome di ogni file che verrà creato con il datalogger nella micro SD card.

INDIRIZZO IP

Seleziona quale modalità utilizzare per l'indirizzo IP tra DHCP o statico. Nel caso di DHCP il server DHCP fornirà automaticamente un indirizzo ip, in modalità statico vanno inseriti i parametri in modo manuale (Se l'indirizzo DNS è lasciato a 0.0.0.0 è recuperato dal gateway).

FTP SERVER

Seleziona la modalità di funzionamento tra accesso libero o con username e password del server FTP

PORTA SERIALE MODBUS SLAVE

Seleziona i parametri di configurazione della porta modbus RTU slave su RS485/RS232 a morsetto. (la modalità RS232/RS485 a morsetto dipende dal codice di acquisto di Z-FLOWCOMPUTER).

CORRETTORE DI VOLUME CONDIZIONI DI BASE

Permette di selezionare nelle applicazioni con correttore di volume se quest'ultimo va riferito alle condizioni standard, normali o di tipo custom.

7.3. MISURTORI DI PORTATA SUPPORTATI

Lo Z-FC accetta svariati tipi di misuratori di portata in ingresso.

I sensori di portata con uscita analogica vanno collegati all'ingresso analogico1:

I sensori di portata con uscita digitale (impulsiva) vanno collegati all'ingresso digitale 1:

7.3.1. ORIFIZIO CALIBRATO CON USCITA LINEARE (VOLUMETRICO)

Questo tipo di misuratore è utilizzato per misure di gas o vapore. L'uscita è solitamente analogica ed è lineare rispetto alla velocità del fluido. Fornisce quindi un segnale proporzionale alla portata volumetrica.

7.3.2. ORIFIZIO CALIBRATO CON USCITA QUADRATICA (VOLUMETRICO)

Questo tipo di misuratore è utilizzato per misure di gas o vapore. L'uscita è solitamente analogica ed è quadratica rispetto alla velocità del fluido. Fornisce quindi un segnale proporzionale al quadrato della portata volumetrica.

7.3.3. TURBINA (VOLUMETRICO)

Il misuratore a turbina è utilizzato generalmente per misure di gas o di liquidi. L'uscita può essere digitale o più raramente analogica. Nel primo caso fornisce un segnale ad impulsi di quantità (frequenza), nel secondo caso genera un segnale analogico proporzionale al volume.

7.3.1. VORTEX (VOLUMETRICO)

Il misuratore Vortex è utilizzato per misure di gas, vapore e liquidi. L'uscita può essere analogica o digitale (frequenza) ed è lineare rispetto alla velocità del fluido. Il segnale in uscita è proporzionale alla portata volumetrica.

7.3.2. MAGNETICO (VOLUMETRICO)

Il misuratore magnetico è utilizzato per misure di liquidi con conducibilità elettrica non nulla, tipicamente acqua. L'uscita può essere digitale o analogica. Nel primo caso fornisce un segnale ad impulsi di quantità (frequenza), nel secondo caso genera un segnale proporzionale alla portata volumetrica.

7.3.3. VORTEX TARATO SU UN PUNTO P/T (MASSICO)

Il misuratore Vortex è utilizzato per misure di gas, vapore e liquidi. L'uscita può essere analogica o digitale (frequenza) ed è lineare rispetto alla velocità del fluido. Il segnale in uscita è proporzionale alla massa in transito, fissati i valori di pressione e temperatura di lavoro (P/T) e il tipo di fluido misurato.

7.3.4. VORTEX CON COMPENSATORE INTEGRATO (MASSICO)

Il misuratore Vortex è utilizzato per misure di gas vapore e liquidi. L'uscita può essere analogica o digitale (frequenza) ed è lineare rispetto alla velocità del fluido. Il segnale in uscita è proporzionale alla massa in transito in quanto dotato di correttore integrato e di sensori di pressione e temperatura. Collegando l'uscita di questo misuratore a Z-FC è possibile calcolare tutti i parametri del fluido che normalmente il correttore integrato non fornisce.

7.3.1. ORIFIZIO CALIBRATO SU UN PUNTO P/T CON USCITA LINEARE (MASSICO)

Questo tipo di misuratore è utilizzato per misure di gas o vapore. L'uscita è solitamente analogica ed è lineare rispetto alla velocità del fluido. Il segnale in uscita è proporzionale alla massa in transito, fissati i valori di pressione e temperatura di lavoro (P/T).

7.3.2. ORIFIZIO CALIBRATO SU UN PUNTO P/T CON USCITA CON USCITA QUADRATICA (MASSICO)

Questo tipo di misuratore è utilizzato per misure di gas o vapore. L'uscita è solitamente analogica ed è quadratica rispetto alla velocità del fluido. Il segnale in uscita è proporzionale al quadrato della massa in transito, fissati i valori di pressione e temperatura di lavoro (P/T).

7.4. MISURATORI DI PRESSIONE SUPPORTATI

La misura della pressione del fluido è necessaria quasi per tutte le applicazioni. È possibile utilizzare dispositivi con uscita in corrente o tensione e con scala di misura assoluta o relativa. È necessario installare questo dispositivo in prossimità del misuratore di portata in modo da misurare l'effettiva pressione del fluido che attraversa il misuratore di portata stesso.

Il misuratore di pressione va collegato all'ingresso analogico 2:

7.5. SENSORI DI TEMPERATURA SUPPORTATI

La temperatura del fluido è necessaria per quasi tutte le applicazioni. È possibile utilizzare dispositivi con uscita in corrente, tensione, PT100, PT1000, Ni100, PT500. È necessario installare questo dispositivo in prossimità del misuratore di portata, in modo da misurare l'effettiva temperatura del fluido che attraversa il misuratore di portata stesso. Nel caso di misura di differenza termica, la temperatura T1 è quella che deve essere rilevata vicino al misuratore di portata (temperatura di mandata).

La misura di temperatura di mandata (T1) va collegata all'ingresso analogico 3:

Ingresso V	Ingresso mA	Ingresso mA	Ingresso RTD	Ingresso RTD	Ingresso RTD
	attivo 4 Fili	passivo 2 Fili	2 Fili	3 Fili	4 Fili
[] 34 [] 33	 → 10 31 → 10 35 	↓ 1 ⊗ 34 1 ⊗ 35 1 ⊗ 36	N.C. 0 31 + N.C. 0 32 - N.C. 0 33 N.C. 0 34 N.C. 0 35 N.C. 0 36	N.C. N.C. 31 N.C. 33 34 N.C. 36	N.C. 6 31 10 32 33 10 34 N.C. 10 34 N.C. 10 35 36

La misura di temperatura di ritorno T2 (usata solo nelle applicazioni con differenza termica) può essere collegata all'ingresso analogico 1, 2 oppure 3. In questo caso dovrà essere utilizzato un sensore con uscita in tensione o corrente, per le connessioni fare riferimento alla seguente figura:

7.6. USCITE DIGITALI

Le uscite digitali sono configurabili per ottenere impulsi di conteggio di energia massa o volume, oppure per segnalare lo stato di allarme delle misure in ingresso (mancanza segnale, fuori scala etc.).

Le uscite digitali dispongono di un morsetto NO (normalmente aperta), NC (normalmente chiusa) come da figura:

Uscita Digitale 1	Uscita Digitale 2	Uscite con contatti puliti
N.O.1=19 COM1=20 N.C.1=21	N.O.2=22 COM2=23 N.C.2=24	Il modulo Z-FLOWCOMPUTER dispone di due uscite digitali con contatti puliti. Le figure mostrano i contatti disponibili dei relè interni.

7.7. USCITA ANALOGICA

L'uscita analogica può replicare una delle misure in ingresso oltre che la portata massica e la portata termica. È disponibile sia come uscita in corrente 0/4...20 mA sia come tensione 0..10V.

Uscita Analogica (V)	Uscita Analogica (mA)	Uscita configurabile
$ \begin{array}{c} 30 \\ 29 \\ 28 \\ \hline \end{array} $	30 Ø 29 Ø 28 Ø	Il modulo Z-FLOWCOMPUTER dispone di una uscita analogica che può essere configurata in tensione o in corrente. Le figure mostrano i collegamenti.

8. APPLICAZIONI CON ACQUA E VAPORE: CALCOLO DI MASSA E VAPORE

Questa applicazione ha come scopo la misura della quantità di calore e della massa di fluido che scorre nella tubazione. Per la misura su vapore surriscaldato sono necessari: misura di portata, misura di temperatura e di pressione. Per la misura su vapore saturo sono sufficienti le misure di portata e di pressione o di temperatura (solamente una delle due). Per la misura su acqua sono necessari solamente la portata e la temperatura.

		Ingressi necessari	
Tipo di fluido	Misura di portata (Q)	Misura di temperatura (T)	Misura di pressione (P)
Vapore			
surriscaldato	Sì	Sì	Sì
Vapore saturo	Sì	A scelta una delle due misure	
Acqua	Si	Si	No

ATTENZIONE!

Le misure di temperatura e pressione devono essere effettuate nei pressi del misuratore di portata.

Le variabili utilizzate da questa applicazione sono ricavate a partire dallo standard di calcolo IAPWS97 (per maggiori informazioni si faccia riferimento al capitolo relativo agli standard di calcolo).

Per configurare correttamente questa applicazione si faccia riferimento ai successivi capitoli, per proseguire è necessario avere installata l'ultima versione del software Easy Flow Computer.

8.1. TIPO DI APPLICAZIONE

Nella sezione	"Configurazione (Generale" sele:	zionare il tipo	di applicazione	"Calcolo di Massa	e Calore"
Nena Sezione	configurazione v	Jenerale Jele	Lionare il tipo		culcolo ul Mussu	c culore .

Configurazione			Configurazione General	e						
Cerca nelle sezioni	Tipo A	pplicazione	Calcolo di Massa e Calore (Vapore o Acqua - IAPW Calcolo di Massa e Calore (Vapore o Acqua - IAPW Differenza Termica Vapore-Acqua Riscaldamento (C	S IF-97) S IF-97) Contacalorie - I	IAPWS IF	-97)			•	
Configurazione Generale Tipo di Fluido Misura di Portata/Volume	Nome Strumento	ZFLOW	Differenza Termica Vapore-Acqua Raffreddamento (Correttore di Volume per gas Naturali (SGERG88) - B Correttore di Volume per gas Naturali (AGA8 GROSS Correttore di Volume per gas Naturali (AGA8-92DC)- Correttore di Volume per gas Reali (RK, RKS) - BETA	Contafrigorie - IETA 3) - BETA BETA A	IAPWSI	F-97)				101
Misura di Pressione Misura di Temperatura	Indirizzo IP	Statico	Correttore di Volume per gas Ideali - BETA	Getoway	192	16	8 🛋	90		1
Uscite Digitali				DNO	0			0		0
Uscita Analogica Display e Datalogger	FTP server Accesso U	ser/Passwor	•	DING	U	Y U		U	×	U
	FTP server accesso protetto		Porta Seria	ale Modbus S	lave					
	FTP Server User:	admin		Station	Address			1 🚔		
	FTP Server Password:	admin		Ba	ud Rate	38	400			•
					Parità	N	o			•
					Data Bit	8				
					Stop Bit	1				

8.2. TIPO DI FLUIDO

Selezionare nel menu la sezione "Tipo di Fluido" e scegliere la tipologia di fluido.

Se si seleziona "Vapore Saturo" dovrà essere scelta la misura di pressione o di temperatura associata, nel caso di Vapore Surriscaldato serviranno entrambe le misure.

8.3. MISURA DI PORTATA

Selezionare nel menu la sezione "Misura di Portata / Volume", selezionare quindi il sensore utilizzato.

Se il sensore di portata ha un'uscita analogica è necessario impostare il corretto tipo di ingresso (tensione corrente) e la corretta scalatura del sensore:

Se il sensore di portata è di tipo ad uscita digitale (impulsiva) va impostato il peso di ciascun impulso:

Nel caso di sensore di tipo massico è richiesto il punto di taratura Pressione, Temperatura (recuperare queste informazioni dai dati di configurazione dello strumento).

L'unità di misura della misura del volume è legata al tipo di sensore che si sta utilizzando (Volumetrico o Massico), il software evidenzierà eventuali errori nella parte bassa dello schermo.

La misura di portata è sempre associata all'Ingresso Analogico 1 o all'Ingresso Digitale 1.

8.4. MISURA DI PRESSIONE

La misura di pressione è necessaria quando il fluido è vapore surriscaldato, mentre è utilizzabile in alternativa alla temperatura quando il fluido è vapore saturo.

Per l'acqua è possibile inserire un valore di pressione media.

Nello Z-FC i valori di pressione sono sempre considerati assoluti. Qualora il misuratore di pressione fosse di tipo relativo, è richiesta l'impostazione della Pressione Atmosferica normalizzata (1.013 bar).

Configurare correttamente la scalatura dello strumento e il valore dell' unità di misura utilizzata.

La misura di pressione è sempre associata all'Ingresso Analogico 2.

ATTENZIONE!

Ai fini dei calcoli interni e delle visualizzazioni, tutte le misure di pressione sono considerate assolute.

8.5. MISURA DI TEMPERATURA

La misura di temperatura è sempre necessaria, eccetto il caso del vapore saturo quando si abbia a disposizione la misura di pressione.

In questo tipo di applicazione la misura di temperatura è associata all'Ingresso analogico 3, e può essere utilizzato un sensore con uscita in corrente o tensione; in alternativa lo stesso ingresso può essere configurato per RTD PT100, PT500, PT1000, NI100 in modalità a 2, 3 o 4 fili.

Nel caso di misura di temperatura con sensore con uscita in tensione / corrente va configurata correttamente la scalatura e l'unità di misura:

Nel caso di misura con RTD (termo resistenza) non è necessario introdurre altre informazioni se non il tipo di misura a 2, 3 o 4 fili ed il tipo di termo resistenza usata:

Campi di misura delle RTD supportate:

PT100	Da -210 a 650°C
PT500	Da -200 a 750°C
PT1000	Da -200 a 210°C
NI100	Da -60 a 250°C

8.6. USCITE DIGITALI

Le due uscite digitali possono essere impostate per segnalare un'anomalia sulle misure in ingresso oppure rilanciare gli impulsi di energia e/o massa (variabili che vengono integrate da Z-FC).

Le due uscite sono configurabili singolarmente.

Per rilevare le anomalie sulle misure in ingresso selezionare la modalità allarme, qui è possibile definire i range di validità delle misure. Basta che una sola delle misure esca dal range definito per generare l'allarme.

Se non si desidera segnalare l'errore di una particolare misura, impostare i valori fuori dal campo di misura del sensore.

ATTENZIONE!

L' allarme sulle uscite digitali non blocca l'integrazione delle misure.

Per collegare una variabile all'uscita ad impulsi selezionare la modalità impulsi ed inserire ogni quante unità inviare un impulso. L'unità dipende dall'unità di misura selezionata per quella variabile nella sezione Display e Datalogger.

La durata dell'impulso è di T=100 ms, il tempo minimo di attesa per il successivo impulso è Tmin=100 ms.

8.7. USCITA ANALOGICA

L'uscita analogica è disponibile per trasmettere ad altri dispositivi una delle variabili disponibili, le variabili integrate o contabilizzate non sono disponibili sull'uscita analogica (utilizzare l'uscita digitale ad impulsi)

Scegliere il tipo d'uscita in corrente o tensione, la variabile da trasmettere e impostare la scalatura.

8.8. DISPLAY (SOLO MODELLO Z-FLOWCOMPUTER) E DATALOGGER

Nella sezione Display e Datalogger sono visualizzate tutte le variabili utilizzate dall'applicazione specifica, qui è possibile scegliere quali visualizzare sul display, con quante cifre decimali e scegliere in quale pagina visualizzarle.

8.8.1. CONFIGURAZIONE VARIABILI

In questa sotto sezione si può selezionare:

- Quali variabili visualizzare sul display
- Quale nome dare alle variabili visualizzate
- Con quale unità di misura è fornita la variabile
- Con quanti decimali deve essere rappresentata la variabile
- Se la variabile deve essere loggata

Configurazione Variabili Pagina 1 Pagina 2 I	Pagina 3 Pagina 4 Pagina 9	5		
Seleziona variabili da Visualizzare, le Unità di r	nisura e i dati del Datalogger			
Variabile	Nome Variabile	Unità di Misura	Decimali	Datalogger
Portata Volumetrica (Calcolata)	Qmis	m^3/h ♥	1	
Portata Massica (Misurata)	Qm	[kg/h] V	1	
Volume Misurato Azzerabile				
Pressione Assoluta	Pabs	MPa 🗸 🗸	1	
Temperatura	Т	∨ ⊃°	1	

Alla fine della sezione è possibile impostare i parametri relativi al datalogger:

Datalogger su SD card Ab	bilitato 🗸 🗸	Nr acquisizioni per file	10000 🚖	Tempo di Campionamento	10	÷.	3

Se si abilita il Datalogger tutte le variabili selezionate saranno salvate con il tempo di campionamento scelto in un file di testo (formato CSV) nella microSD card (nella cartella /LOG).

Il parametro Nr acquisizioni per file indica il numero massimo di acquisizioni (numero di righe) prima di cambiare file.

ATTENZIONE!

Non rimuovere la microSD card con il Datalogger attivato! I dati presenti nella microSD potrebbero andare persi!

Per prelevare i file di log senza spegnere Z-FC utilizzare la connessione al server FTP interno.

8.8.2. PAGINA1 .. PAGINA5

In questa sottosezione è possibile scegliere quali variabili visualizzare nelle 5 schermate disponibili nel display.

Righe Display			
Biga 1			
Portata Volumetrica Calcola	ata	~	
Riga 2			
Specific volume v		~	
Riga 3			
Energia Termica Azzerabile	•	~	Preset
Riga 4			
Portata Termica		~	

La modalità della pagina seleziona se sono da visualizzare le variabili o un trand grafico della portata in ingresso.

Nel caso di modalità variabili, è possibile impostare un pulsante di "Preset" del valore del contatore se la variabile è di tipo Azzerabile ed è accumulata (nel caso di preset selezionato, l'operazione è protetta da password).

La password per le operazioni di preset dei contatori è 5477.

8.9. CONNESSIONI

Schema di connessione dei misuratori per l'applicazione "Calcolo di massa e vapore"

8.10. VARIABILI CALCOLATE

VARIABILE	Applicazione Calcolo di Massa e Calore
	Con Misuratore di portata Massico
Portata Massica (Misurata)	Х
Portata Massica (Calcolata)	Х
Pressione Assoluta	Х
Temperatura	Х
Specific volume v	Х
Density 1/v	Х
Specific Iternal Energy u	Х
Specific entropy s	Х
Specific enthalpy h	Х
Specific isobaric heat capacity cp	*
Specific isochoric heat capacity cv	*
Portata Termica	Х
Energia Termica Azzerabile	Х
Energia Termica Non Azzerabile	Х
Energia Specifica Azzerabile	Х
Energia Specifica Non Azzerabile	Х
Differenza di Temperatura	
Differenza di Entalpia	
Massa Azzerabile	Х
Massa Non Azzerabile	Х
Temperatura 2	

(*) Queste variabili sono calcolate solo in alcune regioni del diagramma di stato del vapore. Nei punti dove non è calcolato si avrà valore 0.

9. APPLICAZIONI CON ACQUA E VAPORE: DIFFERENZA TERMICA VAPORE-ACQUA

Questa applicazione ha come scopo la misura della potenza e dell'energia ceduta a un altro sistema. Nella tubazione di mandata scorre vapore surriscaldato, vapore saturo o acqua, nella tubazione di ritorno scorre l'acqua di condensa. Z-FC calcola la potenza in transito nella tubazione di mandata e nella tubazione di ritorno e ne esegue la differenza; il risultato è la potenza termica scambiata.

Per la misura su vapore surriscaldato sono necessari: misura di portata, misura di pressione, misura di temperatura di mandata (T1) e la misura di temperatura di ritorno (T2).

Per questa applicazione è obbligatorio selezionare l'ingresso digitale 1 per la misura di portata. Di conseguenza il misuratore di portata deve disporre di un'uscita digitale.

Per la misura su vapore saturo sono necessari: misura di portata, misura di pressione o di temperatura di mandata (T1) (solamente una delle due) e la misura della temperatura di ritorno (T2).

Per la misura su acqua sono necessari: misura di portata, misura di temperatura di mandata (T1), misura della temperatura di ritorno (T2).

	Ingressi necessari				
Tipo di fluido	Dortata (O)	Temperatura di	Pressione di	Temperatura di	
di mandata	Ροπαιά (Q)	mandata (T1)	mandata (P)	ritorno (T2)	
Vapore	Sì (colo impulsi)	Sì	Sì	Sì	
surriscaldato					
Vapore saturo	Sì	A scelta una delle due misure Sì		Sì	
Acqua	Sì	Sì	Sì	No	

ATTENZIONE!

Le misure di temperatura T1 e pressione P devono essere effettuate nei pressi del misuratore di portata.

Le variabili utilizzate da questa applicazione sono ricavate a partire dallo standard di calcolo IAPWS97 (per maggiori informazioni si faccia riferimento al capitolo relativo agli standard di calcolo).

Per configurare correttamente questa applicazione si faccia riferimento ai successivi capitoli, per proseguire è necessario avere installata l'ultima versione del software Easy Flow Computer.

9.1. TIPO DI APPLICAZIONE

Nella sezione "Configurazione Generale" selezionare il tipo di applicazione "Differenza Termica Acqua-Vapore Riscaldamento (Conta calorie)" oppure "Differenza Termica Acqua-Vapore Raffreddamento (Conta frigorie)".

9.2. TIPO DI FLUIDO

Selezionare nel menu la sezione "Tipo di Fluido" e scegliere la tipologia di fluido.

Se si seleziona "Vapore Saturo" dovrà essere scelta la misura di pressione o di temperatura associata, nel caso di "Vapore Surriscaldato" serviranno entrambe le misure.

9.3. MISURA DI PORTATA

Selezionare nel menu la sezione "Misura di Portata / Volume", selezionare quindi il sensore utilizzato.

Se il sensore di portata ha un'uscita analogica è necessario impostare il corretto tipo di ingresso (tensione corrente) e la corretta scalatura del sensore:

Se il sensore di portata è di tipo ad uscita digitale (impulsiva) va impostato il peso di ciascun impulso.

Nel caso di sensore di tipo massico è richiesto il punto di taratura Pressione, Temperatura (recuperare queste informazioni dei dati di configurazione dello strumento).

L'unità di misura della misura di pressione è legata al tipo di sensore che si sta utilizzando (Volumetrico o Massico), il software evidenzierà eventuali errori nella parte bassa dello schermo.

La misura di portata è sempre associata all'Ingresso Analogico 1 o all'Ingresso Digitale 1.

9.4. MISURA DI PRESSIONE

La misura di pressione è necessaria quando il fluido è vapore surriscaldato, mentre è utilizzabile in alternativa alla temperatura quando il fluido è vapore saturo.

Per l'acqua è possibile inserire un valore di pressione media.

Nello Z-FC i valori di pressione sono sempre considerati assoluti. Qualora il misuratore di pressione fosse di tipo relativo, è richiesta l'impostazione della Pressione Atmosferica normalizzata (1.013 bar).

Configurare correttamente la scalatura dello strumento e il valore dell'unità di misura utilizzata.

La misura di pressione è sempre associata all'Ingresso Analogico 2.

ATTENZIONE!

Ai fini dei calcoli interni e delle visualizzazioni, tutte le misure di pressione sono considerate assolute.

9.5. MISURA DI TEMPERATURA DI MANDATA (T1) E DI RITORNO (T2)

La misura di temperatura di mandata T1 è sempre necessaria, eccetto il caso del vapore saturo quando si abbia a disposizione la misura di pressione.

Per la misura di temperatura se viene usato l'ingresso IN3 può essere utilizzato un sensore con uscita in corrente o tensione; in alternativa lo stesso ingresso può essere configurato per RTD PT100, PT500, PT1000, N1100 in modalità a 2, 3 o 4 fili.

Nel caso di misura di temperatura con sensore con uscita in tensione / corrente va configurata correttamente la scalatura e l'unità di misura:

Nel caso di misura con RTD (termoresistenza) non è necessario introdurre altre informazioni se non il tipo di misura a 2, 3 o 4 fili ed il tipo di termoresistenza usata.

Campi di misura delle RTD supportate:

PT100	Da -210 a 650°C
PT500	Da -200 a 750°C
PT1000	Da -200 a 210°C
NI100	Da -60 a 250°C

La misura di temperatura di ritorno (t2) può essere effettuata dall'ingresso analogico 1, 2 o 3 (quindi la misura può essere effettuata solo in tensione o corrente). Configurare quindi la scalatura della misura.

ATTENZIONE!

Collegare il sensore di Temperatura all'ingresso analogico non utilizzato, in caso di errore il software avvertirà se l'ingresso selezionato è già in uso.

9.6. USCITE DIGITALI

Le due uscite digitali possono essere impostate per segnalare un'anomalia sulle misure in ingresso oppure rilanciare gli impulsi di energia e/o massa (variabili che vengono integrate da Z-FC).

Le due uscite sono configurabili singolarmente.

Per rilevare le anomalie sulle misure in ingresso selezionare la modalità allarme, qui è possibile definire i range di validità delle misure. Basta che una sola delle misure esca dal range definito per generare l'allarme.

Se non si desidera segnalare l'errore di una particolare misura, impostare i valori fuori dal campo di misura del sensore.

ATTENZIONE!

L' allarme sulle uscite digitali non blocca l'integrazione delle misure.

Per collegare una variabile all'uscita ad impulsi selezionare la modalità impusi ed inserire ogni quante unità inviare un impulso. L'unità dipende dall'unità di misura selezionata per quella variabile nella sezione Display e Datalogger.

La durata dell'impulso è di T=100 ms, il tempo minimo di attesa per il successivo impulso è Tmin=100 ms.

9.7. USCITA ANALOGICA

L'uscita analogica è disponibile per trasmettere ad altri dispositivi una delle variabili disponibili, le variabili integrate o contabilizzate non sono disponibili sull'uscita analogica (utilizzare l'uscita digitale ad impulsi)

Scegliere il tipo d'uscita in corrente o tensione, la variabile da trasmettere e impostare la scalatura.

9.8. DISPLAY (SOLO MODELLO Z-FLOWCOMPUTER) E DATALOGGER

Nella sezione Display e Datalogger sono visualizzate tutte le variabili utilizzate dall'applicazione specifica, qui è possibile scegliere quali visualizzare sul display, con quante cifre decimali e scegliere in quale pagina visualizzarle.

9.8.1. CONFIGURAZIONE VARIABILI

In questa sotto sezione si può selezionare:

- Quali variabili visualizzare sul display
- Quale nome dare alle variabili visualizzate
- Con quale unità di misura è fornita la variabile
- Con quanti decimali deve essere rappresentata la variabile
- Se la variabile deve essere loggata

Configurazione Variabili	Pagina 1	Pagina 2	Pagina 3	Pagina 4	Pagina 5						
Seleziona variabili da Visualizzare, le Unità di misura e i dati del Datalogger											
Variabile			No	me Variab	oile	Unità di I	Misura	Deci	imali	Datalogger	
Portata Volumetrica (0	Calcolata)		Qmis			m^3/h	~	1	-		
Portata Massica (Misurata)			Qm			[kg/h]	~	1	-		
Volume Misurato Azze	erabile										
Pressione Assoluta			Pabs			MPa	~	1	-		
Temperatura			Т			°C	¥	1	-		

Alla fine della sezione è possibile impostare i parametri relativi al datalogger:

			_				
Datalogger su SD card	Abilitato	۷	Nr acquisizioni per file	10000 🚖	Tempo di Campionamento	10	÷ s

Se si abilita il datalogger tutte le variabili selezionate saranno salvate con il tempo di campionamento scelto in un file di testo (formato CSV) nella microSD card (nella cartella /LOG). Il parametro Nr acquisizioni per file indica il numero massimo di acquisizioni (numero di righe) prima di cambiare file.

ATTENZIONE!

Non rimuovere la microSD card con il datalogger attivato! I dati presenti nella microSD potrebbero andare persi!

Per prelevare i file di log senza spegnere Z-FC utilizzare la connessione al server FTP interno.

9.8.2. PAGINA1 .. PAGINA5

In questa sottosezione è possibile scegliere quali variabili visualizzare nelle 5 schermate disponibili nel display.

Rig	he Display		
R	iga 1		
F	Portata Volumetrica Calcolata	~	
R	iga 2		
S	Specific volume v	~	
R	iga 3		
E	nergia Termica Azzerabile	~ [Preset
R	iga 4		
F	Portata Termica	~	

La modalità della pagina seleziona se sono da visualizzare le variabili o un trend grafico della portata in ingresso.

Nel caso di modalità variabili, è possibile impostare un pulsante di "Preset" del valore del contatore se la variabile è di tipo Azzerabile ed è accumulata (nel caso di preset selezionato, l'operazione è protetta da password).

La password per le operazioni di preset dei contatori è 5477.

9.9. CONNESSIONI

Tipico Schema di connessione dei misuratori per le applicazioni "Differenza Termica Acqua-Vapore Riscaldamento (Conta calorie)" oppure "Differenza Termica Acqua-Vapore Raffreddamento (Conta frigorie)"

9.10. VARIABILI CALCOLATE

	<u>Applicazione</u>				
<u>VARIABILE</u>	<u>Conta Calorie / Conta Frigorie</u>				
	Con Misuratore di portata				
	Massico				
Portata Massica (Misurata)	Х				
Portata Massica (Calcolata)	х				
Pressione Assoluta	х				
Temperatura	х				
Specific volume v	х				
Density 1/v	Х				
Specific Iternal Energy u	Х				
Specific entropy s	х				
Specific enthalpy h	х				
Specific isobaric heat capacity	*				
ср					
Specific isochoric heat capacity	*				
CV	Y				
	× ×				
Energia Termica Azzerabile	<u>^</u>				
Azzerabile	Х				
Energia Specifica Azzerabile	Х				
Energia Specifica Non	x				
Azzerabile	~				
Differenza di Temperatura	Х				
Differenza di Entalpia	Х				
Massa Azzerabile	Х				
Massa Non Azzerabile	X				
Temperatura 2	X				

(*) Queste variabili sono calcolate solo in alcune regioni del diagramma di stato del vapore. Nei punti dove non è calcolato si avrà valore 0.

10. CORRETTORE DI VOLUME PER GAS NATURALI / REALI

Questa applicazione ha come scopo il calcolo della portata e del volume di un gas alla temperatura di base Tb e pressione Pb a partire dalla misura alle condizioni di lavoro Q, P e T.

Al fine di ottenere questi calcoli si utilizzano degli algoritmi di calcolo normati.

Z-FLOWCOMPUTER per il calcolo della portata volumetrica corretta può utilizzare i seguenti algoritmi:

ALGORITMO	APPLICAZIONE
AGA8 GROSS METHOD 2	Correttore di Volume per Gas naturali
AGA8-92DC (ISO 12213-2)	Correttore di Volume per Gas naturali
SGERG88 (ISO 12213-3)	Correttore di Volume per Gas naturali
Formula di Redlich-Kwong (RK)	Correttore di Volume per Gas reali
Formula di Redlich-Kwong-Soave (RKS)	Correttore di Volume per Gas reali

ATTENZIONE!

Le misure di temperatura e pressione devono essere effettuate nei pressi del misuratore di portata.

Per configurare correttamente questa applicazione si faccia riferimento ai successivi capitoli, per proseguire è necessario avere installata l'ultima versione del software Easy Flow Computer.
10.1. TIPO DI APPLICAZIONE

Nella sezione "Configurazione Generale" selezionare il tipo di applicazione "Correttore di Volume per gas Naturali o Reali".

A questo punto è necessario inserire le condizioni di base a cui riferire il calcolo del volume: normali, standard o custom.

10.2. MISURA DI PORTATA

Selezionare nel menu la sezione "Misura di Portata / Volume", selezionare quindi il sensore utilizzato.

Se il sensore di portata ha un'uscita analogica è necessario impostare il corretto tipo di ingresso (tensione corrente) e la corretta scalatura del sensore.

Se il sensore di portata è di tipo ad uscita digitale (impulsiva) va impostato il peso di ciascun impulso.

In questo tipo di applicazione non è possibile utilizzare un sensore di tipo massico.

La misura di portata è sempre associata all'Ingresso Analogico 1 o all'Ingresso Digitale 1.

10.3. MISURA DI PRESSIONE

Per il calcolo della correzione di volume dei un gas è sempre necessaria la misura di pressione.

Nello Z-FC i valori di pressione sono sempre considerati assoluti. Qualora il misuratore di pressione fosse di tipo relativo, è richiesta l'impostazione della Pressione Atmosferica normalizzata (1.013 bar).

Configurare correttamente la scalatura dello strumento e il valore dell'unità di misura utilizzata.

La misura di pressione è sempre associata all'Ingresso Analogico 2.

ATTENZIONE!

Ai fini dei calcoli interni e delle visualizzazioni, tutte le misure di pressione sono considerate assolute.

10.4. MISURA DI TEMPERATURA

La misura di temperatura è sempre necessaria.

In questo tipo di applicazione la misura di temperatura è associata all'Ingresso analogico 3, e può essere utilizzato un sensore con uscita in corrente o tensione; in alternativa lo stesso ingresso può essere configurato per RTD PT100, PT500, PT1000, NI100 in modalità a 2, 3 o 4 fili.

Nel caso di misura di temperatura con sensore con uscita in tensione / corrente va configurata correttamente la scalatura e l'unità di misura.

Nel caso di misura con RTD (termoresistenza) non è necessario introdurre altre informazioni se non il tipo di misura a 2, 3 o 4 fili ed il tipo di termoresistenza usata:

Campi di misura delle RTD supportate:

PT100	Da -210 a 650°C
PT500	Da -200 a 750°C
PT1000	Da -200 a 210°C
NI100	Da -60 a 250°C

10.5. CORRETTORE DI VOLUME

In questa sezione il software richiede le caratteristiche del gas in base all'algoritmo di calcolo selezionato.

10.5.1. SGERG88 ISO 12213-3

I parametri del gas naturale necessari al calcolo secondo la ISO 12213-3 sono:

PARAMETRI GAS PER	R ISO 12213-3	
Tipo Gas CUSTO	om ~	
CO2 mole fraction [%]	6,00000	* *
Superior Calorific value [MJ/m^3]	4066,00000	A
Relative Density	581,00000	▲ ▼
H2 mole fraction [%]	0.00000	* *

Sono già stati inserite le caratteristiche fornite dai gas utilizzati nella norma oppure è possibile scegliere un tipo di gas customizzato.

10.5.2. AGA8 GROSS METHOD2

I parametri del gas naturale necessari al calcolo secondo AGA8 Gross Method2 sono:

Gross Method	GROSS I	METHOD 2	
Gas Type	Gulf Coas	st	~
Dr Relativ	e Density	0,58108	÷
Dr Relativ CO2 mole fractior	re Density n [mole %]	0,58108	÷

Sono già stati inserite le caratteristiche fornite dai gas utilizzati nel trattato oppure è possibile scegliere un tipo di gas customizzato.

10.5.3. AGA8 92-DC ISO 12213-2

I parametri del gas naturale necessari al calcolo secondo AGA8 92-DC:

PARAMETRI GAS PER ISO 12213-2				
	Tipo Gas G	AS1 V		
	Mole Fra	ction [%]		
1-Methane	0,96500	11-iso-Butane	0,00100	-
2-Nitrogen	0,00300 🜲	12-n-Butane	0,00100	÷
3-Carbon Dioxide	0,00600 ≑	13-iso-Pentane	0,00050	÷
4-Ethane	0,01800 🖨	14-n-Pentane	0,00030	-
5-Propane	0,00450	15-n-Hexane	0,00070	•
6-Water	0,00000	16-n-Heptane	0,00000	+
7-Hydrogen sulfide	0,00000 ≑	17-n-Octane	0,00000	-
8-Hydrogen	0,00000	18-n-Nonane	0,00000	+
9-Carbon monoxide	0,00000	19-n-Decane	0,00000	-
10-Oxygen	0,00000	20-Helium	0,00000	+
	21-Argon 0,	00000		

Sono già stati inserite le caratteristiche fornite dai gas utilizzati nella norma oppure è possibile scegliere un tipo di gas customizzato.

10.5.1. RK - Redlich-Kwong

I parametri del gas necessari al calcolo secondo RK – Redlich – Kwong sono :

	Metodo di calcolo	RK - Redlich-K	wong	\sim	
Tipo di Gas	N-Butane	~	T critica P critica	425,200000 37,970000	▲ K ▲ bar

Sono già stati inserite le caratteristiche fornite da alcuni gas oppure è possibile scegliere un tipo di gas customizzato.

10.5.2. RKS - Redlich-Kwong-Soave

I parametri del gas necessari al calcolo secondo RKS – Redlich – Kwong – Soave sono :

	Metodo di calcolo	RKS -	Redlich-Kwong-Soa	ve 🗸	
Tipo di Gas	N-Butane	~	T critica P critica Fattore Acentrico	425,200000 37,970000 0,193000	K bar

Sono già stati inserite le caratteristiche fornite da alcuni gas oppure è possibile scegliere un tipo di gas customizzato.

10.6. USCITE DIGITALI

Le due uscite digitali possono essere impostate per segnalare un'anomalia sulle misure in ingresso oppure rilanciare gli impulsi di Volume misurato o corretto (variabili che vengono integrate da Z-FC).

Le due uscite sono configurabili singolarmente.

Per rilevare le anomalie sulle misure in ingresso selezionare la modalità allarme, qui è possibile definire i range di validità delle misure. Basta che una sola delle misure esca dal range definito per generare l'allarme.

Se non si desidera segnalare l'errore di una particolare misura, impostare i valori fuori dal campo di misura del sensore.

ATTENZIONE!

L' allarme sulle uscite digitali non blocca l'integrazione delle misure.

Per collegare una variabile all'uscita ad impulsi selezionare la modalità impulsi ed inserire ogni quante unità inviare un impulso. L'unità dipende dall'unità di misura selezionata per quella variabile nella sezione Display e Datalogger.

La durata dell'impulso è di T=100 ms, il tempo minimo di attesa per il successivo impulso è Tmin=100 ms.

10.7. USCITA ANALOGICA

L'uscita analogica è disponibile per trasmettere ad altri dispositivi una delle variabili disponibili, le variabili integrate o contabilizzate non sono disponibili sull'uscita analogica (utilizzare l'uscita digitale ad impulsi)

Scegliere il tipo d'uscita in corrente o tensione, la variabile da trasmettere e impostare la scalatura:

10.8. DISPLAY (SOLO MODELLO Z-FLOWCOMPUTER) E DATALOGGER

Nella sezione Display e Datalogger sono visualizzate tutte le variabili utilizzate dall'applicazione specifica, qui è possibile scegliere quali visualizzare sul display, con quante cifre decimali e scegliere in quale pagina visualizzarle.

10.8.1. CONFIGURAZIONE VARIABILI

In questa sotto sezione si può selezionare:

- Quali variabili visualizzare sul display
- Quale nome dare alle variabili visualizzate
- Con quale unità di misura è fornita la variabile
- Con quanti decimali deve essere rappresentata la variabile
- Se la variabile deve essere loggata

Configurazione Variabili Pagina 1 Pagina 2 Pagina 3 Pagina 4 Pagina 5					
Seleziona variabili da Visualizzare, le Unità di misura e i dati del Datalogger					
Variabile	Nome Variabile	Unità di Misura	Decimali	Datalogger	
Portata Volumetrica (Misurata)	Qmis	m^3/h ~	1 🜲		
Portata Massica (Calcolata)					
Volume Misurato Azzerabile	Vmp	m^3 ~	1 🚔		
Pressione Assoluta	Pabs	MPa \checkmark	1		
Temperatura	Т	°C ~ ~	1		
Specific volume v					
D					

Alla fine della sezione è possibile impostare i parametri relativi al datalogger:

Datalogger su SD card Abilitato V Nr acquisizioni per file 10000 😴 Tempo di Campionamento 110 🐨 s	Datalogger su SD card	Abilitato 🗸	Nr acquisizioni per file	10000 🚖 Tempo di Campionamento	10	÷ s
---	-----------------------	-------------	--------------------------	--------------------------------	----	-----

Se si abilita il Datalogger tutte le variabili selezionate saranno salvate con il tempo di campionamento scelto in un file di testo (formato CSV) nella microSD card (nella cartella /LOG).

Il parametro Nr acquisizioni per file indica il numero massimo di acquisizioni (numero di righe) prima di cambiare file.

ATTENZIONE!

Non rimuovere la microSD card con il Datalogger attivato! I dati presenti nella microSD potrebbero andare persi!

Per prelevare i file di log senza spegnere Z-FC utilizzare la connessione al server FTP interno.

10.8.2. PAGINA1 .. PAGINA5

In questa sottosezione è possibile scegliere quali variabili visualizzare nelle 5 schermate disponibili nel display.

igurazione Variabili Pagina I Pagina 2 Pagina 3 Pagina 4 Pagir	na 5
Modalità: Variabili Trend Portata Volumetrica (Misurata)	
Piebo Disolari	
righe Display	
Riga 1	
Portata Volumetrica Misurata 🗸 🗸	
Riga 2	
Portata Volumetrica Corretta 🗸 🗸	
Riga 3	
Volume Misurato Azzerabile \checkmark	Preset
Riga 4	
Volume Corretto Azzerabile 🗸 🗸 🗸	Preset

La modalità della pagina seleziona se sono da visualizzare le variabili o un trand grafico della portata in ingresso.

Nel caso di modalità variabili, è possibile impostare un pulsante di "Preset" del valore del contatore se la variabile è di tipo Azzerabile ed è accumulata (nel caso di preset selezionato, l'operazione è protetta da password).

La password per le operazioni di preset dei contatori è 5477.

10.9. CONNESSIONI

Schema di connessione dei misuratori per l'applicazione "CORRETTORE DI VOLUME"

10.10. VARIABILI CALCOLATE APPLICAZIONE CORRETTORE DI VOLUME PER GAS NATURALI / REALI

Nell'applicazione correttore di volume è possibile utilizzare solo misuratori di portata di tipo volumetrico, le variabili calcolate/misurate sono:

VARIABILE
Portata Volumetrica Misurata
Portata Volumetrica Corretta
Pressione Assoluta
Temperatura
Volume corretto
Volume corretto azzerabile
Volume misurato
Volume misurato azzerabile

11. CORRETTORE DI VOLUME PER GAS IDEALI

Disponibile a breve.

12. UTILIZZO DEL DISPLAY DEL MODELLO Z-FLOWCOMPUTER

Tramite II pannello visualizzatore (display) è possibile visualizzare i valori misurati e calcolati da Z-FC.

Il pannello deve essere connesso all'alimentazione e allo Z-FC mediante cavo ethernet, il pannello è di tipo touch, è quindi possibile utilizzare come pulsanti le zone del display contenenti icone o campi numerici configurabili.

Per il corretto funzionamento l'indirizzo IP del pannello deve avere la prima terna di valori identica all'indirizzo IP dello Z-FC, mentre l'ultimo valore deve essere differente.

La predisposizione di fabbrica è la seguente:

IP Pannello = 192.168.90.102

IP Z-FC = 192.168.90.101

Se il pannello e lo Z-FC non sono connessi ad una rete ethernet aziendale non è necessario variare l'indirizzo IP di nessuno dei due.

Il pannello dopo l'avviamento si presenta simile all'immagine sottostante.

Lungo i bordi di sinistra e in alto sono posizionate le icone sensibili al tocco, mentre al centro sono visibili le variabili che sono state scelte in fase di configurazione e che sono diverse per ogni pagina.

Nella tabella seguente per ogni icona è descritta la relativa funzione.

ICONA	Effetto se toccata
	Riporta alla pagina n.1
\$	Passa al menù configurazione
	Passa alla pagina precedente
•	Passa alla pagina successiva
Login	S477 e non è modificabile.
	. 0 Enter

MANUALE UTENTE – Z-FLOWCOMPUTER / Z-FLOWCOMPUTER-B

Alarms	Passa alla pagina di elenco storico degli allarmi
	Alarms Elog Login
	 10/03/21 22:20:14 Flowmeter conf. P/T values error 10/03/21 22:20:14 Analog out of configured region 10/03/21 22:20:14 AIN3 signal out of range 10/03/21 22:20:14 AIN1 signal out of range
	•
	Il significato degli allarmi è il seguente:
	- "AIN1 signal out of range"
	Compare a video qualora il sensore collegato all'ingresso analogico sia in errore o collegato in modo errato
	- "AIN2 signal out of range"
	Compare a video qualora il sensore collegato all'ingresso analogico sia in errore o collegato in modo errato
	- "AIN3 signal out of range"
	Compare a video qualora il sensore collegato all'ingresso analogico sia in errore o collegato in modo errato
	- "Analog out of configured region"
	Valido solo per applicazione "Tipo Fluido" > "Vapore Surriscaldato"
	Compare a video qualora i valori di pressione (P) e temperatura (T) misurati indicano un punto di esercizio che non è nelle condizioni di vapore surriscaldato
	Rimedio: controllare che l'impianto sia in esercizio e verificare corretta installazione dei sensori di pressione e temperatura
	- "Flowmeter conf. P/T values error"
	Compare a video qualora i parametri "Condizioni di calcolo del misuratore" introdotti tramite Easy FlowComputer indicano un punto P,T che non appartiene alle regioni (4,Saturo) o (2,Vapore)
	Rimedio: controllare configurazione Easy FlowComputer nella sezione "Misura di Portata/Volume" > "Condizioni di calcolo del misuratore"
*	Nessuno; Indica che Z-FC è programmato con il programma1 (applicazioni Acqua e Vapore)
\bigcirc	Nessuno; Indica che Z-FC è programmato con il programma2 (applicazioni per la correzione di volume dei gas)

12.1. IMPOSTAZIONE INDIRIZZO IP

Per impostare un indirizzo diverso procedere come segue:

- Accendere il pannello e attendere la conclusione dell'avviamento
- Toccare l'icona 🔯 , deve apparire l'indicazione della versione firmware del pannello (HMI Ver.)
- Toccare l'icona **vii** più volte fino alla visualizzazione della pagina seguente:

- Toccare i valori da modificare e impostare i nuovi valori
- Terminare l'operazione toccando l'icona SET.
- Riavviare il pannello toccando l'icona HMI Reboot.

12.2. IMPOSTAZIONE DATA/ORA

Nel menu configurazione del pannello è anche possibile impostare la data/ora, impostare l'ora e la data in modo che il Datalogger fornisca una data/ora corretta.

N.B.!

La data/ora è mantenuta anche a strumento spento dalle batterie interne di Z-FC.

13. Il Webserver

Z-Flowcomputer dispone di un Webserver integrato per la configurazione avanzata.

Per accedere al webserver con l'indirizzo IP di fabbrica di Z-FLOWCOMPUTER digitare:

http://192.168.90.101/maintenance/index.html

dove 192.168.90.101 è l'indirizzo ip di fabbrica.

13.1. CONFIGURAZIONE AVANZATA DI Z-FLOWCOMPUTER TRAMITE IL WEBSERVER

Tramite il webserver è possibile effettuare alcune configurazioni avanzate che non sono disponibili tramite il software Easy FlowComputer.

13.1.1. REAL TIME VIEW

In questa sezione è possibile visualizzare in tempo reale alcuni parametri relativi a Z-FLOWCOMPUTER e agli ingressi analogici 1 e 2.

SENECA®	Z-FLOWCOMPUTER	Real Time View	Firmware Version : 5200	
Real Time View	Local Time : 04/01/10	70 22:10:21		
Setup	Local Time: 04/01/15	10 22.15.21		
Local Time Setup	DHCP	Disabled		
	ACTUAL IP ADDRESS	: 192.168.85.105		
	ACTUAL IP MASK	255.255.255.0		
	ACTUAL GATEWAY ADDRESS	192.168.85.1		
	ACTUAL DNS ADDRESS	: 0.0.0.0		
	ACTUAL MAC ADDRESS	: c8-f9-81-0d-00-0b		
	ANALOG 1	291 uA		
	ANALOG ENG. 1	: 291		
	ANALOG 2	: 64291 uA		
	ANALOG ENG. 2	: -1245		
	DIGITAL INPUT 1	: LOW		
	DIGITAL INPUT 2	: LOW		
	DIGITAL INPUT 3	: LOW		
	DIGITAL INPUT 4	LOW		
	TOTALIZER 1	: 0	0	SET
	TOTALIZER 2	: 0	0	SET
	TOTALIZER 3	: 0	0	SET
	TOTALIZER 4	: 0	0	SET
	COUNTER 1	: 0	0	SET
	COUNTER 2	: 0	0	SET
	COUNTER 3	: 0	0	SET
	COUNTER 4	: 52277	0	SET
	PERIOD DIGITAL INPUT 1 [ms]	142397		
	PERIOD DIGITAL INPUT 2 [ms]	146665		
	PERIOD DIGITAL INPUT 3 [ms]	146666		
	PERIOD DIGITAL INPUT 4 [ms]	146666		
	DIGITAL OUTPUT 1	NOT EXCITED		ON/OFF
	DIGITAL OUTPUT 2	NOT EXCITED		ON/OFF
		RESET		

13.1.2. SETUP

In questa sezione è possibile configurare i parametri avanzati di Z-FLOWCOMPUTER:

SENECA SENECA
Real Time View
Setup
Local Time Setup

Z-FLOWCOMPUTER Setup Firmware	Version: 5200	
	CURRENT	UPDATED
DHCP	Disabled	Disabled V
STATIC IP ADDRESS WHEN DHCP DISABLED	192.168.85.105	192.168.85.105
STATIC IP MASK WHEN DHCP DISABLED	255.255.255.0	255.255.255.0
STATIC GATEWAY ADDRESS WHEN DHCP DISABLED	192.168.85.1	192.168.85.1
DNS ADDRESS	0.0.0.0	0.0.0.0
ANALOG INPUTS SAMPLE TIME [ms]	10	10
INPUT TYPE ANALOG 1	Current	Current [uA]
SAMPLES TO AVERAGE ANALOG 1	32	32
BEGIN SCALE ANALOG 1	0 uA	0
END SCALE ANALOG 1	20000 uA	20000
BEGIN SCALE ENG. ANALOG 1	0	0
END SCALE ENG. ANALOG 1	20000	20000
INPUT TYPE ANALOG 2	Current	Current [uA]
SAMPLES TO AVERAGE ANALOG 2	32	32
BEGIN SCALE ENG. ANALOG 2	0 uA	0
END SCALE ENG. ANALOG 2	20000 uA	20000
BEGIN SCALE ENG. ANALOG 2	0	0
END SCALE ENG. ANALOG 2	20000	20000
WEB SERVER PORT	80	80
WEB SERVER AUTHENTICATION USER NAME	admin	admin
WEB SERVER AUTHENTICATION USER PASSWORD	admin	admin
FTP SERVER PORT	21	21
FTP SERVER AUTHENTICATION USER NAME	admin	admin
FTP SERVER AUTHENTICATION USER PASSWORD	admin	admin
SYNC CLOCK WITH TIME INTERNET	Enabled	ENABLED V
SYNC CLOCK UPDATE EVERY	DAY	DAY 🔻
NTP SERVER 1 ADDRESS	193.204.114.232	193.204.114.232
NTP SERVER 2 ADDRESS	193.204.114.233	193.204.114.233

DAYLIGHT SAVING TIME Disabled

DIGITAL INPUT TYPE PNP FILTER TIME DIGITAL INPUT 1 [ms] FILTER TIME DIGITAL INPUT 2 [ms] FILTER TIME DIGITAL INPUT 3 [ms] FILTER TIME DIGITAL INPUT 4 [ms] FAIL MODE DIGITAL OUTPUTS Disabled

FAIL TIMEOUT DIGITAL OUTPUTS [s] 5 DIGITAL OUTPUT 1 STATE WHEN IN FAIL Not Excited DIGITAL OUTPUT 2 STATE WHEN IN FAIL Not Excited

GMT 0

admin
admin
ENABLED V
DAY V
193.204.114.232
193.204.114.233
DISABLED V
0
PNP V
0
0
0
0
Disabled 🔻
5
NOT EXCITED V
NOT EXCITED V
FACTORY DEFAULT
APPLY

۲

¥

DHCP

Se attivo permette di ottenere un indirizzo IP da un server DHCP (tipicamente il gateway/router) presente nella rete.

STATIC IP

È l'indirizzo ip quando non è attiva la modalità DHCP.

STATIC IP MASK

È la maschera di rete utilizzata.

STATIC GATEWAY ADDRESS

È l'indirizzo del gateway.

DNS ADDRESS

È l'indirizzo del server DNS da utilizzare.

ANALOG INPUTS SAMPLE TIME

È il tempo di campionamento dell'ingresso analogico.

INPUT TYPE ANALOG

Seleziona se l'ingresso deve essere in tensione o corrente.

SAMPLES TO AVERAGE ANALOG

È il numero di campioni analogici su cui effettuare la media.

BEGIN SCALE ANALOG

È l'inizio scala dell'ingresso.

END SCALE ANALOG

È il fine scala dell'ingresso.

BEGIN ENG. SCALE ANALOG

È il valore ingegneristico legato all'inizio scala analogico.

END ENG. SCALE ANALOG

È il valore ingegneristico legato al fine scala analogico.

WEB SERVER PORT

È la porta su cui è attivo il servizio Web server

WEB SERVER AUTHENTICATION USER NAME

È il nome utente per accedere al webserver.

WEB SERVER AUTHENTICATION USER PASSWORD

È la password per accedere al webserver.

SYNC CLOCK WITH TIME INTERNET

Abilita o no la sincronizzazione della data/ora tramite internet.

SYNC CLOCK UPDATE EVERY

Seleziona ogni quanto sincronizzare la data/ora tramite internet.

NTP SERVER

Seleziona il server Network Time Protocol per recuperare la data/ora via internet.

DAYLIGHT SAVING TIME

Permette di attivare o no il passaggio automatico all'ora legale (ora legale europea).

GMT

Permette di impostare l'offset rispetto l'ora di greenwich mean time (esempio: Italia +1).

DIGITAL INPUTS TYPE

Permette di selezionare se gli ingressi digitali debbano essere di tipo PNP o NPN.

FILTER TIME DIGITAL INPUT

Permette di impostare un filtro in ms sugli ingressi digitali

FAIL MODE DIGITAL OUTPUTS

Non usato.

FAIL TIMEOUT DIGITAL OUTPUTS (s)

Non usato.

DIGITAL OUTPUT STATEWHEN IN FAIL

Non usato.

FACTORY DEFAULT

Riporta tutti i parametri ai valori di fabbrica

13.1.3. LOCAL TIME SETUP

Questa sezione permette di impostare i parametri relativi all'ora locale e al giorno dell'anno

SENECA [®]	Z-FLOWCOMPUTER Local Time Setup	Firmware Versi	on : 5200
al Time View		CURRENT	UPDATED
tup	YEAR	1970	1970
cal Time Setup	MONTH	January	January 🔻
	DAY	4	4
	HOUR	22	22
	MINUTE	20	20
	SECOND	49	48

APPLY

14. IL PROTOCOLLI MODBUS RTU E MODBUS TCP-IP

Z-FLOWCOMPUTER supporta i protocolli Modbus RTU Slave e Modbus TCP-IP server.

Il protocollo Modbus RTU Slave è disponibile tramite il morsetto 10-11-12 (seriale RS485) e tramite la porta USB.

Il protocollo Modbus TCP-IP Server è disponibile tramite ethernet alla porta IP 502, è supportato 1 client Modbus TCP.

Per maggiori informazioni fare riferimento alle specifiche Modbus:

http://www.modbus.org/specs.php

Sono supportati i registri di tipo Holding Register con la convenzione che il primo registro (registro offset 0) è il registro 40001.

Per le variabili REAL32 (floating point singola precisione):

le variabili hanno la parte più significativa nel registro ModBus più basso, ad esempio la variabile Q si trova nei registri holding 41100 (parte più significativa) e 41101 (parte meno significativa) cioè il registro ModBus 1099 e 1100.

Per le variabili UNSIGNED INT32 (intero senza segno a 32 bit):

le variabili hanno la parte più significativa nel registro ModBus più basso, ad esempio la variabile CMD_AUX1 si trova nei registri holding 43005 (parte più significativa) e 43006 (parte meno significativa) cioè il registro ModBus con offset 3004 e 3005.

14.1. TABELLA DEI REGISTRI MODBUS

	REGISTRO MODBUS	OFFSET	NUMERO			
VARIABILE	(HOLDING REGISTER)	REGISTRO MODBUS	REGISTRI	FORMATO	DESCRIZIONE	ΠΡΟ
Q	41100-41101	1099- 1100	2	REAL 32	Portata Volumetrica	R
Vmis_par	41102-41103	1101- 1102	2	REAL 32	Volume Misurato (Azzerabile)	R
Vmis	41104-41105	1103- 1104	2	REAL 32	Volume Misurato (Non Azzerabile)	R
Р	41106-41107	1105- 1106	2	REAL 32	Pressione Assoluta	R
т	41108-41109	1107- 1108	2	REAL 32	Temperatura di mandata	R
v	41110-41111	1109- 1110	2	REAL 32	Specific volume	R
rho	41112-41113	1111- 1112	2	REAL 32	Density	R
u	41114-41115	1113- 1114	2	REAL 32	Specific Internal energy	R
S	41116-41117	1115- 1116	2	REAL 32	Specific entropy	R
h	41118-41119	1117- 1118	2	REAL 32	Specific enthalpy	R
ср	41120-41121	1119- 1120	2	REAL 32	Specific isobaric heat capacity	R
cv	41122-41123	1121- 1122	2	REAL 32	Specific isochoric heat	R

					capacity	
Qm	41124-41125	1123- 1124	2	REAL 32	Portata massica	R
QT	41126-41127	1125- 1126	2	2 REAL 32		R
ET_par	41128-41129	1127- 1128	2	2 REAL 32		R
ET	41130-41131	1129- 1130	2	REAL 32	Energia Termica (Non Azzerabile)	R
Es_par	41132-41133	1131- 1132	2	REAL 32	Energia specifica (Azzerabile)	R
Es	41134-41135	1133- 1134	2	REAL 32	Energia specifica (Non Azzerabile)	R
DT	41136-41137	1135- 1136	2	REAL 32	Differenza di temperatura	R
Dh	41138-41139	1137- 1138	2	REAL 32	Differenza di entalpia	R
Vref_par	41140-41141	1139- 1140	2	REAL 32	Volume Corretto (Azzerabile)	R
Vref	41142-41143	1141- 1142	2	REAL 32	Volume Corretto (Non Azzerabile)	R
M_par	41144-41145	1143- 1144	2	REAL 32	Massa (Azzerabile)	R
М	41146-41147	1145- 1146	2	REAL 32	Massa (Non Azzerabile)	R
T2	41148-41149	1147- 1148	2	REAL 32	Temperatura 2	R
Qref	41150-41151	1149- 1150	2	REAL 32	Portata Volumetrica	R

					Corretta	
CMD_REG	42000	1999	1	UNSIGNED INT 16	Registro comandi	R/W
CMD_AUX1	43005-43006	3004- 3005	2	UNSIGNED INT 32	Valore da caricare parte intera	R/W
CMD_AUX2	43007-43008	3006- 3007	2	REAL 32	Valore da caricare parte frazionaria	R/W

14.2. INVIO DI COMANDI TRAMITE PROTOCOLLO MODBUS

È possibile inviare comandi a Z-FC tramite il registro CMD_REG, qui di seguito l'elenco dei comandi supportati:

COMANDO	DESCRIZIONE
(valori esadecimali)	
0xBEC1	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Volume azzerabile
0xBEC2	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Volume non azzerabile
0xBEC3	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Energia termica azzerabile
0xBEC4	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Energia termica non azzerabile
0xBEC5	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Energia specifica azzerabile
0xBEC6	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Energia specifica non azzerabile
0xBEC7	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Volume corretto azzerabile
0xBEC8	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Volume corretto non azzerabile
0xBEC9	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Portata Massica azzerabile
0xBECA	Carica il valore del registro CMD_AUX1 come parte intera e CMD_AUX2
	come parte frazionaria sulla variabile Portata Massica non azzerabile
0xABC0	Ferma il datalogger (deve essere abilitato)
0xABC1	Fa partire il datalogger (deve essere abilitato)

15. FIRMWARE E SOFTWARE UPDATE DI Z-FC E DEL DISPLAY (SOLO MODELLO Z-FLOWCOMPUTER)

Il firmware di Z-FC può essere aggiornato tramite il server ftp interno o tramite la microSD.

15.1. Firmware Update di Z-FC

15.1.1. Aggiornamento Firmware da FTP server

Per aggiornare il firmware di Z-FC dal server FTP è necessario inserire una scheda microSD formattata con file system FAT16 o FAT32.

Collegarsi al server FTP di Z-FC e copiare il file "zflow.bin" con il nuovo firmware nella cartella principale (root) del server FTP.

Alla fine del trasferimento del file, Z-FC accenderà 4 led rossi e iniziarà a programmare il firmware sulla flash interna (durata circa 30 secondi).

Alla fine Z-FC si riavvierà con il nuovo firmware.

ATTENZIONE!

Non spegnere il computer Z-FLOW prima della fine della procedura di aggiornamento del firmware!

15.1.2. Aggiornamento Firmware da microSD card

Per aggiornare il firmware dalla scheda microSD seguire la procedura:

- Spegnere Z-FC
- Copiare nella cartella principale (root) della microSD il file del firmware "zflow.bin" (utilizzare un PC con lettore di SD card)
- Inserire la scheda microSD nello Z-FC
- Accendere Z-FC
- Ora Z-FC accenderà 4 led rossi e inizierà a programmare il firmware sulla flash interna (dura circa 30 secondi). Alla fine Z-FC si riavvierà con il nuovo firmware.
- Il file "zflow.bin" verrà eliminato automaticamente dalla scheda microSD

ATTENZIONE!

Non spegnere il computer Z-FLOW prima della fine della procedura di aggiornamento del firmware!

15.2. Software Update del Display (SOLO MODELLO Z-FLOWCOMPUTER)

È possibile aggiornare il software del display di Z-FC tramite la seguente procedura. È necessario disporre di una chiavetta di memoria USB per proseguire.

• Copiare la cartella mt8000ie e il suo contenuto nella cartella principale della chiavetta USB:

- Accendere il Display e successivamente inserire la chivetta USB nella porta USB del Display.
- Comparirà a display un menu. Selezionare "Download"
- Inserire la password 111111 e confermare
- Selezionare "USB Disk" e "Disk_a_1" poi premere OK
- Al termine dell'operazione il display torna al normale funzionamento
- Estrarre la chiavetta USB dal Display

16. CONNESSIONE AL SERVER FTP DI Z-FLOWCOMPUTER

Z-FC è dotato di un server FTP, per accedere all'FTP server Seneca consiglia l'utilizzo di Filezilla Client.

Effettuare il download di Filezilla Client da:

https://filezilla-project.org/download.php?show_all=1

Lanciare l'installazione e configurare un nuovo sito:

Z								FileZilla		
<u>F</u> ile	<u>M</u> odifica	<u>V</u> isualizza	<u>T</u> rasferimento	<u>S</u> erver	<u>S</u> egnalibri	<u>A</u> iuto				
1	- 🛛 🗉	1 👚 孝	🤹 🔛 🕅 🏨	1	R F 6	3				

Inserire L'IP di Z-FC (di fabbrica 192.168.90.101) e le credenziali di accesso (di default Utente: admin, Password: admin):

	Gestore siti ×
Seleziona elemento:	Generale Avanzate Impostazioni di trasferimento Set di caratteri Host: 192.168.90.101 Porta:
<u>N</u> uovo sito Nuova <u>c</u> artella Nuovo preferito <u>R</u> inomina	
<u>E</u> limina Dupl <u>i</u> ca	
	<u>C</u> onnetti <u>O</u> K Annulla

Nella sezione Impostazioni di trasferimento limitare ad 1 il numero massimo di connessioni:

Ge	store siti		×			
Generale	Avanzate	Impostazioni di trasferimento	Set di caratteri			
Modalità Pred <u>e</u> f	di <u>t</u> rasferim inita O <u>A</u> t	ento: ttiva <u>P</u> assiva				
√ <u>L</u> imita <u>N</u> ume	✓ Limita il numero di connessioni simultanee <u>N</u> umero massimo di connessioni: 1					

Ora alzare il timeout massimo a 9999 secondi nel menu principale di filezilla: Modifica -> Impostazioni

MANUALE UTENTE – Z-FLOWCOMPUTER / Z-FLOWCOMPUTER-B

	Impostazioni	×
Seleziona gagina:	Descrizione generale Per avere maggiori informazioni sul significato delle varie opzioni, avviare la configurazione guidata rete. Avvia configurazione guidata rete Timeout Timeout Timeout in secondi: 9999 (10-9999, 0 per disabilitarlo) Se nessun dato è stato inviato o ricevuto durante un'operazione più a lungo dell'intervallo specificato, il collegamento sarà chiuso e FileZilla proverà a ricollegarsi. Impostazioni di riconnessione Numero massimo di nuovi tentativi: 2 (0-99) Ritardo tra i tentativi di login non riusciti: 5 (0-999 secondi) NOTA: alcuni server potrebbero bloccare i client se i tentativi di riconnessione sono tro o gli intervalli tra i tentativi troppo brevi.	ppi

17. STANDARD DI CALCOLO UTILIZZATI

17.1. STANDARD DI CALCOLO IAPWS-IF 97

Le applicazioni del programma 1 si basano sullo standard di calcolo IAPWS Industrial Formulation 1997.

L'implementazione utilizzata su Z-FC è valida per i seguenti range di Pressione e Temperatura:

Temperatura >= 0°C e <= 800°C

Pressione >= 0 MPa e <= 100 MPa

In questo intervallo vengono individuate 4 regioni, ognuna delle quali è caratterizzata da diverse equazioni

17.1.1. REGIONI INDIVIDUATE DALLA IAPWS-IF 97

La regione 1 presenta acqua allo stato liquido.

La regione 2 presenta lo stato di vapore.

La regione 3 individua lo stato termodinamico vicino il punto critico.

La regione 4 è rappresentata dalla curva di saturazione (fluido saturo).

Le regioni 1 e 2 sono rappresentate ciascuna da una equazione fondamentale per l'energia libera specifica di Gibbs g(p,T).

La regione 3 è rappresentata da una equazione fondamentale per l'energia libera specifica di Helmholtz $f(\rho,T)$ (dove ρ è la densità).

La regione 4 è rappresentata da una equazione Ps(T) oppure da una Ts(P).

Le quantità termodinamiche calcolate da Z-FC dipendono dalla regione in cui vengono calcolate, in particolare:

Quantità termodinamiche calcolate nella Regione 1 (acqua allo stato liquido)

Volume specifico (v) Densità (1/v) Energia interna specifica (u) Entropia specifica (s) Entalpia specifica (h) Capacità termica isobarica specifica (cp)

Quantità termodinamiche calcolate nella Regione 2 (vapore)

Volume specifico (v) Densità (1/v) Energia interna specifica (u) Entropia specifica (s) Entalpia specifica (h) Capacità termica isobarica specifica (cp)

Quantità termodinamiche calcolate nella Regione 3 (stato termodinamico vicino al punto critico)

Densità (1/v) Energia interna specifica (u) Entropia specifica (s) Entalpia specifica (h) Capacità termica isocora specifica (cv)

Quantità termodinamiche calcolate nella Regione 4 (curva di saturazione)

Volume specifico (v) Densità (1/v) Energia interna specifica (u) Entropia specifica (s) Entalpia specifica (h) Capacità termica isobarica specifica (cp)

17.2. EQUAZIONE DI STATO DEI GAS IDEALI

In generale, utilizzando l'approssimazione dei gas ideali è possibile ottenere una funzione del tipo:

 $Qb = Q^{*}(P/Pb)^{*}(Tb/T)^{*}(Zb/Z)$

Dove:

Qb = portata alle condizioni base

Q = portata alle condizioni di lavoro

Tb = temperatura alle condizioni base

T = temperatura alle condizioni di lavoro

Zb = compressibilità alle condizioni base

Z = compressibilità alle condizioni di lavoro

Poiché per un gas ideale il rapporto Zb/Z =1 l'equazione si semplifica in:

 $Qb = Q^{*}(P/Pb)^{*}(Tb/T)$

È, quindi, possibile effettuare la compensazione di volume dalle condizioni di lavoro (P,T) a condizioni base (Pb, Tb).

17.3. EQUAZIONI DI STATO REDLINCH-KWONG E REDLINCH-KWONG-SOAVE (RK, RKS)

17.3.1. EQUAZIONE DI STATO DI REDLINCH-KWONG (RK)

Introdotta nel 1949, l'equazione di stato Redlich-Kwong è stata un considerevole miglioramento rispetto ad altre equazioni di quel tempo.

Benché superiore all'equazione di Van der Waals, non è molto precisa riguardo alla fase liquida e non può quindi essere impiegata per un calcolo accurato degli equilibri liquido-vapore.

Comunque può essere impiegata per questo scopo con l'ausilio di correlazioni separate per la fase liquida.

L'equazione di stato Redlich-Kwong è adeguata per il calcolo delle proprietà dei gas in condizioni in cui il rapporto tra la pressione e la pressione critica è minore della metà del rapporto tra la temperatura e la temperatura critica.

A partire dall'equazione di stato di van der Waals:

$$P = \frac{RT}{v-b} - \frac{a}{v^2}$$

Dove:

P = Pressione assoluta

T = Temperatura assoluta

$$R_{\parallel}=8,314472\;rac{\mathrm{J}}{\mathrm{mol}\cdot\mathrm{K}}$$

v = volume molare

a e b = costanti di van der Waals, dipendono dal gas in esame.

Questa può essere espressa in termini di coefficiente di compressibilità z:

$$z = \frac{v}{v-b} - \frac{a}{RTv}$$

Ora, il termine:

$$\frac{a}{RTv}$$

È anche detto termine attrattivo.

Il termine attrattivo viene modificato da Redlich-Kwong come:

$$\frac{a}{(v+b)RT^{1,5}}$$

17.3.2. EQUAZIONE DI STATO DI REDLINCH-KWONG-SOAVE (RKS)

Soave (1972) ha modificato in maniera sostanziale la dipendenza dalla temperatura utilizzando una funzione a(T) nel termine attrattivo:

$$\frac{a(T)}{(v+b)RT}$$

Dove a(T):

$$a(T) = 0,4274 \frac{R^2 T_c^2}{P_c} \left[1 + m \left(1 - T_R^{0,5} \right) \right]^2$$

Tc = Temperatura Critica del gas

Pc = Pressione Critica del gas

Tr = T/Tc

 $m = 0,480 + 1,57\omega - 0,176\omega^2$

 ω è il fattore acentrico (dipende dal gas in esame).

Questa modifica ha permesso di riprodurre la tensione di vapore di sostanze apolari, specialmente per valori superiori a 1 bar, con notevole accuratezza.

17.4. STANDARD DI CALCOLO SGERG88 (ISO 12213-3)

Lo standard di calcolo utilizza lo standard ISO 12213-3 (Natural gas - Calculation of compression factor - Part 3: Calculation using physical properties).

Il metodo utilizza equazioni che si basano sul concetto che il gas naturale nel gasdotto può essere caratterizzato unicamente per il calcolo delle sue proprietà volumetriche da un insieme appropriato e distintivo di proprietà fisiche misurabili. Queste caratteristiche, unitamente alla pressione e temperatura, sono utilizzati come dati di ingresso per il metodo.

Il metodo utilizza le seguenti caratteristiche fisiche: potere calorifico superiore, densità relativa e anidride carbonica contenuta.

Il metodo è particolarmente utile nella situazione comune in cui la composizione molare totale non è disponibile, ma può anche essere preferito per la sua relativa semplicità.

Per gas con un additivo sintetico, il contenuto di idrogeno deve essere conosciuto.

17.4.1. TIPOLOGIA DI GAS UTILIZZABILE

Il metodo di calcolo è valido solo per gas che rientrano nei seguenti range:

absolute pressure 0 MPa <= p <= 12 MPa temperature 263 K <= T <= 338 K mole fraction of carbon dioxide 0 <= xCO2 <= 0,20 mole fraction of hydrogen 0 <= xH2 <= 0,10 superior calorific value 30 MJ·m-3 <= Hs <= 45 MJ·m-3 relative density 0,55 <= d <= 0,80

Le frazioni molari di altri componenti di gas naturale non sono richiesti come input. Le seguenti frazioni molari, tuttavia, devono rimanere nei seguenti intervalli:

methane 0,7 <= xCH4 <= 1,0nitrogen 0 <= xN2 <= 0,20ethane 0 <= xC2H6 <= 0,10propane 0 <= xC3H8 <= 0,035butanes 0 <= xC4H10 <= 0,015pentanes 0 <= xC5H12 <= 0,005hexanes 0 <= xC6 <= 0,001heptanes 0 <= xC7 <= 0,0005octanes plus higher hydrocarbons 0 <= xC8+ <= 0,0005carbon monoxide 0 <= xCO <= 0,03helium 0 <= xHe <= 0,005water 0 <= xH2O <= 0,00015

Il metodo si applica solo a miscele allo stato gassoso superiore al punto di rugiada alle condizioni di temperatura e pressione di interesse.

Per gas di gasdotto, il metodo è applicabile su più ampi intervalli di temperatura e pressione, ma con maggiore incertezza.

I range estesi su cui è stato testato il metodo sono i seguenti:

absolute pressure 0 MPa <= p <= 12 MPa temperature 263 K <= T <= 338 K mole fraction of carbon dioxide 0 <= xCO2 <= 0,30mole fraction of hydrogen 0 <= xH2 <= 0,10superior calorific value 20 MJ·m-3 <= Hs <=u 48 MJ·m-3 relative density 0,55 <= d <= 0,90

È possibile anche estendere le frazioni molari:

methane 0,5 <= xCH4 <= 1,0 nitrogen 0 <= xN2 <= 0,50 ethane 0 <= xC2H6 <= 0,20 propane 0 <= xC3H8 <= 0,05 butanes 0 <= xC4H10 <= 0,015 pentanes 0 <= xC5H12 <= 0,005 hexanes 0 <= xC6 <= 0,001 heptanes 0 <= xC7 <= 0,0005 octanes plus higher hydrocarbons 0 <= xC8+ <= 0,0005 carbon monoxide 0 <= xCO <= 0,03 helium 0 <= xHe <= 0,005 water 0 <= xH2O <= 0,00015

Il metodo, quindi, non può essere utilizzato fuori da questi range.

17.4.2. INCERTEZZA DEL CALCOLO

L'incertezza calcolata ΔZ per il range NON esteso è rappresentata in figura:

Per il calcolo dell'incertezza nel range esteso si rimanda alla ISO 12213-3 Annex F.

STANDARD DI CALCOLO AGA8 GROSS METHOD 2 17.5.

Lo standard di calcolo utilizza il documento emesso da AGA-8 alla fine del 1992, permette di calcolare la compressibilità in modo non dettagliato come lo standard ISO 12213-2 ma segue, comunque, le linee guida della ISO 12213-1.

Lo standard di calcolo necessita dei seguenti dati relativi al gas in esame:

-Densità Relativa del Gas

-Frazione molare CO2 [moli %]

-Frazione molare N2 [moli %]

17.5.1. TIPOLOGIA DI GAS UTILIZZABILE

Il metodo di calcolo è valido solo per gas che rientrano nei seguenti range:

Quantity	Normal Range
Relative Density*	.554 to .87
Gross Heating Value**	477 to 1150 Btu/scf
Gross Heating Value***	18.7 to 45.1 MJ/m ³
Mole Percent Methane	45.0 to 100.0
Mole Percent Nitrogen	0 to 50.0
Mole Percent Carbon Dioxide	0 to 30.0
Mole Percent Ethane	0 to 10.0
Mole Percent Propane	0 to 4.0
Mole Percent Total Butanes	0 to 1.0
Mole Percent Total Pentanes	0 to 0.3
Mole Percent Hexanes Plus	0 to 0.2
Mole Percent Helium	0 to 0.2
Mole Percent Hydrogen	0 to 10.0
Mole Percent Carbon Monoxide	0 to 3.0
Mole Percent Argon	#
Mole Percent Oxygen	#
Mole Percent Water	0 to 0.05
Mole Percent Hydrogen Sulfide	0 to 0.02

* Reference Condition: Relative density at 60°F,14.73 psia

Reference Conditions: Combustion at 60°F,14.73 psia; density at 60°F,14.73 psia;
 Reference Conditions: Combustion at 25°C,0.101325 MPa; density at 0°C,0.101325 MPa.

The normal range is considered to be zero for these compounds.
17.5.1. INCERTEZZA DEL CALCOLO

L'American Gas Association ha calcolato l'incertezza del calcolo nella regione 1 qui raffigurata:

L' American Gas Association raccomanda, comunque, l'utilizzo dell'algoritmo di calcolo per le temperature tra 0 °C e 55 °C con una pressione massima di 8.3 MPa.

17.6. STANDARD DI CALCOLO AGA8 92-DC (ISO 12213-2)

Lo standard di calcolo è descritto nella ISO 12213-2 Natural gas Calculation of compression factor - Part 2: Calculation using molar-composition analysis.

Il metodo utilizza un'equazione basata sul concetto che il gas naturale può essere

caratterizzato unicamente, ai fini del calcolo, dalle sue proprietà volumetriche mediante l'analisi dei suoi componenti.

Questa analisi, assieme alla pressione e temperatura, vengono utilizzati come dati di ingresso per il metodo.

Il metodo utilizza un'analisi molare in cui sono presenti tutti i componenti in quantità superiore alla frazione molare di 0,00005.

17.6.1. TIPOLOGIA DI GAS UTILIZZABILE

I range di applicazione del metodo per gas da gasdotto sono:

absolute pressure 0 MPa <= p <= 12 MPa temperature 263 K <= T <= 338 K superior calorific value 30 MJm–3 <= Hs <= 45 MJm–3 relative density 0,55 <= d <= 0,80

Le frazioni molari dei componenti del gas naturale devono essere compresi nei seguenti intervalli:

methane $0,7 \le x$ CH4 $\le 1,00$ nitrogen $0 \le x$ N2 $\le 0,20$ carbon dioxide $0 \le x$ CO2 $\le 0,20$ ethane $0 \le x$ C2H6 $\le 0,10$ propane $0 \le x$ C3H8 $\le 0,035$ butanes $0 \le x$ C4H10 $\le 0,015$ pentanes $0 \le x$ C5H12 $\le 0,005$ hexanes $0 \le x$ C6 $\le 0,001$ heptanes $0 \le x$ C7 $\le 0,0005$ octanes plus higher hydrocarbons $0 \le x$ C8+ $\le 0,0005$ hydrogen $0 \le x$ H2 $\le 0,10$ carbon monoxide $0 \le x$ CO $\le 0,03$ helium $0 \le x$ He $\le 0,005$ water $0 \le x$ H2O $\le 0,000$ 15

Ogni componente per cui xi è inferiore a 0,00005 può essere trascurato.

Il metodo si applica solo a miscele allo stato gassoso superiore al punto di rugiada alle condizioni di temperatura e pressione di interesse.

Il range di applicazione testato oltre i limiti dati sopra è:

absolute pressure 0 MPa <= p <= 65 MPa

temperature 225 K <=*T* <= 350 K

relative density 0,55 <= *d* <= 0,90

superior calorific value 20 MJ·m-3 <= Hs <= 48 MJ·m-3

Le frazioni molari dei componenti del gas naturale devono essere compresi nei seguenti intervalli:

methane 0,50 <= *x*CH4 <= 1,00

nitrogen 0 <= *x*_{N2} <= 0,50

carbon dioxide $0 \le x \cos 2 \le 0,30$

ethane 0 <= *x*C_{2H6} <= 0,20

propane 0 <= *x*C3H8 <= 0,05

hydrogen 0 <= *x*H₂ <= 0,10

butanes 0 <= xC4H10 <= 0,015 pentanes 0 <= xC5H12 <= 0,005 hexanes 0 <= xC6 <= 0,001 heptanes 0 <= xC7 <= 0,0005 octanes plus higher hydrocarbons 0 <= xC8+ <= 0,0005 helium 0 <= xHe <= 0,005 water 0 <= xH20 <= 0,000 15

17.6.1. INCERTEZZA DEL CALCOLO

L'incertezza calcolata ΔZ per il range NON esteso è rappresentata in figura:

Per il calcolo dell'incertezza nel range esteso si rimanda alla ISO 12213-2 Annex E.

18. VERIFICA DELL'IMPLEMENTAZIONE DELL'ALGORITMO AGA8 GROSS METHOD 2

Nella seguente tabella sono riportati i valori di calcolo dell'algoritmo implementato su Z-FLOWCOMPUTER e i valori riportati dal documento "Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases, Transmission Measurement Committee Report No. 8", Second edition, November 1992 Table B.6-4.

Condizioni base dei gas: P= 14,73 psia, T=60 F

Tipo di gas:

	GULF	AMARILLO	EKOFISK	HIGH N2	HIGH CO2 & N2
Gr	0,581078	0,608657	0,649521	0,644869	0,686002
N2 (mole %)	0,2595	3,1284	1,0068	13,4650	5,7021
CO2 (mole %)	0,5956	0,4676	1,4954	0,9850	7,5851

Fattore di Compressibilità calcolato con il metodo 2, in verde i valori forniti in tabella B.6-4 in confronto con il risultato ottenuto da Z-FLOWCOMPUTER (arrotondato alla 5° cifra decimale).

Condizioni base dei gas usati nell'algoritmo: Pressione= 14,73 psia, Temperatura=60 F

Τ	Р	Gulf Coast	Gulf Coast	Amarillo	Amarillo	Ekofisk	Ekofisk	High N2	High N2	High Co2	High Co2
[F]	[psia]	(AGA8)	(Z-FC)	(AGA8)	(Z-FC)	(AGA8)	(Z-FC)	(AGA8)	(Z-FC)	(AGA8)	(Z-FC)
32	14,73	0.997408	0.997408	0,997310	0,99731	0,996794	0,99679	0,997682	0,99768	0,997222	0,99722
32	100	0.982375	0.982375	0,981701	0,98170	0,978120	0,97812	0,984272	0,98427	0,981083	0,98108
32	200	0.964691	0.964691	0,963323	0,96332	0,955976	0,95598	0,968582	0,96858	0,962048	0,96205
32	400	0.929268	0.929268	0,926463	0,92646	0,910983	0,91098	0,937449	0,93745	0,923738	0,92374
32	600	0.894059	0.894059	0,889768	0,88977	0,865334	0,86533	0,906940	0,90694	0,885400	0,88540
32	800	0.859563	0.859563	0,853785	0,85379	0,819681	0,81968	0,877516	0,87752	0,847573	0,84757
32	1000	0.826501	0.826501	0,819323	0,81932	0,775240	0,77524	0,849774	0,84977	0,811099	0,81110
32	1200	0.795840	0.795840	0,787484	0,78748	0,734024	0,73402	0,824432	0,82443	0,777179	0,77718
50	14,73	0.997705	0.997705	0,997618	0,99762	0,997151	0,99715	0,997957	0,99796	0,997540	0,99754
50	100	0.984422	0.984422	0,983822	0,98382	0,980599	0,98060	0,986167	0,98617	0,983285	0,98329
50	200	0.968862	0.968862	0,967651	0,96765	0,961069	0,96107	0,972427	0,97243	0,966548	0,96655
50	400	0.937919	0.937919	0,935459	0,93546	0,921743	0,92174	0,945356	0,94536	0,933134	0,93313
50	600	0.907474	0.907474	0,903748	0,90375	0,882375	0,88238	0,919082	0,91908	0,900079	0,90008
50	800	0.877944	0.877944	0,872976	0,87298	0,843550	0,84355	0,893979	0,89398	0,867847	0,86785
50	1000	0.849878	0.849878	0,843755	0,84376	0,806195	0,80620	0,870495	0,87050	0,837082	0,83708
50	1200	0.823951	0.823951	0,816847	0,81685	0,771638	0,77164	0,849137	0,84914	0,808610	0,80861
100	14,73	0.998360	0.998360	0,998295	0,99830	0,997943	0,99794	0,998557	0,99856	0,998239	0,99824
100	100	0.988916	0.988916	0,988476	0,98848	0,986058	0,98606	0,990273	0,99027	0,988089	0,98809
100	200	0.977963	0.977963	0,977082	0,97708	0,972193	0,97219	0,980715	0,98072	0,976299	0,97630
100	400	0.956544	0.956544	0,954785	0,95479	0,944810	0,94481	0,962196	0,96220	0,953178	0,95318
100	600	0.935947	0.935947	0,933331	0,93333	0,918132	0,91813	0,944627	0,94463	0,930867	0,93087
100	800	0.916409	0.916409	0,912980	0,91298	0,892521	0,89252	0,928209	0,92821	0,909639	0,90964

100	1000	0.898198	0.898198	0,894025	0,89403	0,868415	0,86842	0,913156	0,91316	0,889804	0,88980
100	1200	0.881593	0.881593	0,876778	0,87678	0,846323	0,84632	0,899679	0,89968	0,871699	0,87170
130	14,73	0.998653	0.998653	0,998599	0,99860	0,998300	0,99830	0,998822	0,99882	0,998550	0,99855
130	100	0.990919	0.990919	0,990551	0,99055	0,988507	0,98851	0,992080	0,99208	0,990217	0,99022
130	200	0.981995	0.981995	0,981261	0,98126	0,977142	0,97714	0,984342	0,98434	0,980586	0,98059
130	400	0.964691	0.964691	0,963235	0,96324	0,954894	0,95489	0,969484	0,96948	0,961865	0,96187
130	600	0.948242	0.948242	0,946091	0,94609	0,933474	0,93347	0,955560	0,95556	0,944010	0,94401
130	800	0.932817	0.932817	0,930012	0,93001	0,913137	0,91314	0,942712	0,94271	0,927215	0,92722
130	1000	0.918592	0.918592	0,915192	0,91519	0,894174	0,89417	0,931079	0,93108	0,911686	0,91169
130	1200	0.905742	0.905742	0,901825	0,90183	0,876893	0,87689	0,920793	0,92079	0,897635	0,89764

19. VERIFICA DELL'IMPLEMENTAZIONE DELL'ALGORITMO AGA8 92-DC ISO 12213-2

Nella seguente tabella sono riportati i valori di calcolo dell'algoritmo implementato su Z-FLOWCOMPUTER e i valori riportati dalla norma ISO 12213-2.

	Gas 1	Gas 2	Gas 3	Gas 4	Gas 5	Gas 6
xC02	0,0060	0,0050	0,0150	0,0160	0,0760	0,0110
xN2	0,0030	0,0310	0,0100	0,1000	0,0570	0,1170
xH2	0,00	0,00	0,00	0,0950	0,00	0,00
xCO	0,00	0,00	0,00	0,0100	0,00	0,00
xCH4	0,9650	0,9070	0,8590	0,7350	0,8120	0,8260
xC2H6	0,0180	0,0450	0,0850	0,0330	0,0430	0,0350
xC3H8	0,0045	0,0084	0,0230	0,0074	0,0090	0,0075
x•iso-C4H10	0,0010	0,0010	0,0035	0,0012	0,0015	0,0012
xn-C4H10	0,0010	0,0015	0,0035	0,0012	0,0015	0,0012
xiso-C5H12	0,0005	0,0003	0,0005	0,0004	0,00	0,0004
xn-C5H12	0,0003	0,0004	0,0005	0,0004	0,00	0,0004
xC6H14	0,0007	0,0004	0,00	0,0002	0,00	0,0002
xC7H16	0,00	0,00	0,00	0,0001	0,00	0,0001
xC8H18	0,00	0,00	0,00	0,0001	0,00	0,00

Tipo di gas:

Fattore di Compressibilità calcolato secondo ISO 12213-2, in verde i valori forniti in tabella C.2 in confronto con il risultato ottenuto da Z-FLOWCOMPUTER (arrotondato alla 5° cifra decimale).

P [bar]	T [°C]	Gas 1 (AGA8)	Gas 1 (Z-FC)	Gas 2 (AGA8)	Gas 2 (Z-FC)	Gas 3 (AGA8)	Gas 3 (Z-FC)	Gas 4 (AGA8)	Gas 4 (Z-FC)	Gas 5 (AGA8)	Gas 5 (Z-FC)	Gas 6 (AGA8)	Gas 6 (Z-FC)
60	-3,15	0.84053	0.84053	0.83348	0.83348	0.79380	0.79380	0.88550	0.88550	0.82609	0.82609	0.85380	0.85380
60	6,85	0.86199	0.86199	0.85596	0.85596	0.82206	0.82206	0.90144	0.90144	0.84969	0.84969	0.87370	0.87370
60	16,85	0.88006	0.88006	0.87484	0.87484	0.84544	0.84544	0.91501	0.91501	0.86944	0.86944	0.89052	0.89052
60	36,85	0.90867	0.90867	0.90466	0.90466	0.88183	0.88183	0.93674	0.93674	0.90052	0.90052	0.91723	0.91723
60	56,85	0.93011	0.93011	0.92696	0.92696	0.90868	0.90868	0.95318	0.95318	0.92368	0.92368	0.93730	0.93730
120	-3,15	0.72133	0.72133	0.71044	0.71044	0.64145	0.64145	0.81024	0.81024	0.69540	0.69540	0.75074	0.75074
120	6,85	0.76025	0.76025	0.75066	0.75066	0.68971	0.68971	0.83782	0.83782	0.73780	0.73780	0.78586	0.78586
120	16,85	0.79317	0.79317	0.78475	0.78475	0.73123	0.73123	0.86137	0.86137	0.77369	0.77369	0.81569	0.81569
120	36,85	0.84515	0.84515	0.83863	0.83863	0.79697	0.79697	0.89913	0.89913	0.83022	0.83022	0.86311	0.86311
120	56,85	0.88383	0.88383	0.87870	0.87870	0.84553	0.84553	0.92766	0.92766	0.87211	0.87211	0.89862	0.89862

20. VERIFICA DELL'IMPLEMENTAZIONE DELL'ALGORITMO SGERG88 ISO12213-3

Nella seguente tabella sono riportati i valori di calcolo dell'algoritmo implementato su Z-FLOWCOMPUTER e i valori riportati dalla norma ISO 12213-3.

Tipo di gas:

	Gas 1	Gas 2	Gas 3	Gas 4	Gas 5	Gas 6
xCO2	0,006	0,005	0,015	0,016	0,076	0,011
xH2	0,000	0,000	0,000	0,095	0,000	0,000
D	0,581	0,609	0,650	0,599	0,686	0,644
Hs (MJ.m-3)	40,66	40,62	43,53	34,16	36,64	36,580

Fattore di Compressibilità calcolato secondo ISO 12213-3, in verde i valori forniti in tabella C.2 in confronto con il risultato ottenuto da Z-FLOWCOMPUTER (arrotondato alla 5° cifra decimale).

P [bar]	Т [•C]	Gas 1 (SGERG88)	Gas 1 (Z-FC)	Gas 2 (SGERG88)	Gas 2 (Z-FC)	Gas 3 (SGERG88)	Gas 3 (Z-FC)	Gas 4 (SGERG88)	Gas 4 (Z-FC)	Gas 5 (SGERG88)	Gas 5 (Z-FC)	Gas 6 (SGERG88)	Gas 6 (Z-FC)
60	-3,15	0.84084	0.84084	0.83397	0.83397	0.79415	0.79415	0.88569	0.88569	0.82664	0.82664	0.85406	0.85406
60	6,85	0.86202	0.86202	0.85615	0.85615	0.82210	0.82210	0.90150	0.90150	0.85017	0.85017	0.87388	0.87388
60	16,85	0.88007	0.88007	0.87500	0.87500	0.84553	0.84553	0.91507	0.91507	0.87003	0.87003	0.89071	0.89071
60	36,85	0.90881	0.90881	0.90491	0.90491	0.88223	0.88223	0.93684	0.93684	0.90124	0.90124	0.91736	0.91736
60	56,85	0.92996	0.92996	0.92690	0.92690	0.90893	0.90893	0.95302	0.95302	0.92394	0.92394	0.93690	0.93690
120	-3,15	0.72146	0.72146	0.71140	0.71140	0.64322	0.64322	0.80843	0.80843	0.69557	0.69557	0.74939	0.74939
120	6,85	0.75969	0.75969	0.75079	0.75079	0.69062	0.69062	0.83613	0.83613	0.73828	0.73828	0.78473	0.78473
120	16,85	0.79257	0.79257	0.78472	0.78472	0.73196	0.73196	0.85999	0.85999	0.77463	0.77463	0.81490	0.81490
120	36,85	0.84492	0.84492	0.83877	0.83877	0.79778	0.79778	0.89827	0.89827	0.83166	0.83166	0.86266	0.86266
120	56,85	0.88322	0.88322	0.87832	0.87832	0.84554	0.84554	0.92662	0.92662	0.87269	0.87269	0.89749	0.89749